
1. Video Containing Qualitative Results
We invite the reader to view the video available at https:
//vision.cs.utexas.edu/projects/VidOSC/, where
we provide: (1) a comprehensive overview of VIDOSC, (2) video
examples from HowToChange, and (3) qualitative examples of
VIDOSC’s predictions. These examples highlight VIDOSC’s
ability in identifying non-OSC moments as background and ef-
fectively distinguishing among the three OSC states. It delivers
temporally smooth and coherent predictions that follow the natu-
ral OSC progression (from initial to transitioning, and then to the
end state), and shows strong performance even with novel OSCs
not seen in training. All these underscore the efficacy of VIDOSC.

2. Video OSC
Expanding on Sec. 3.1, we clarify three aspects of our definition of
video OSC. First, we focus on OSCs that lead to a visible change
in an object’s appearance. Processes that are non-visual or in-
volve mere spatial movements (such as moving an apple from the
sink to the cutting board) do not qualify as OSCs. Second, in line
with previous works [2, 31, 50, 51], we operate under the assump-
tion that each input video predominantly features a single OSC.
The challenge of handling videos with multiple concurrent OSCs
remains an intriguing avenue for future research. Lastly, during
training, the input video and its OSC category name (e.g., shred-
ding chicken) are available (as provided in both ChangeIt and our
HowToChange, although not always accurate due to data collec-
tion noise). For evaluation, every test video (in both ChangeIt and
HowToChange) is accompanied by a manually verified OSC cate-
gory.

2.1. Data Collection
We streamline our dataset collection via an automated pro-
cess. First we apply LLAMA2 [54] to ASR transcriptions in
HowTo100M [36] with the following text prompt, one sentence
at a time:

[Text Prompt to LLAMA2] You will receive descrip-
tions corresponding to a how-to instructional video.
Your task is to identify any instances of Object State
Change (OSC) based on the provided text. An OSC
is a visually detectable transformation where an object
undergoes a change that is difficult to reverse. Exam-
ples include apple peeling/cutting, bacon frying, milk
boiling, butter melting, cake frosting, eggs whisking,
cream whipping, etc.

• Note 1: OSCs must be visually detectable. General
actions like food preparing, or non-visual processes
like onions sweetening, are not included.

• Note 2: Simple spatial transitions, resulting from ac-
tions like add, mix, put, or place, are not considered
OSCs.

• Note 3: To qualify as an OSC, there must be a tran-
sition from one state to another, which should be in-
dicated by an active action in the text description.
The mere presence of a state (e.g., sliced pineapples,
peeled apples) does not count unless there is explicit

ASR transcription
time stamp = 1:31

you're going to use some rotisserie
chicken so just get your rotisserie

chicken and shred it up

LLAMA2
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state transition = shredding
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Figure 7. Our proposed data collection process for HowToChange.
HTM-AA [19] denotes the auto-aligned version of HowTo100M.

text describing the change (e.g., we slice the pineap-
ples).

• Note 4: Generally, sentences without OSCs are far
more common than those with OSCs.

To report identified OSCs, please use the following for-
mat: [object] + [state transition of the OSC]. Ensure the
first word in each identified OSC is the object, and the
subsequent words describe a state transition. If multi-
ple OSCs are identified, separate them with semicolons
(;). If no OSCs are detected, simply reply with None.

From the responses given by LLAMA2, we identify object and
state transitions corresponding to the ASR transcription. Utilizing
the HTM-AA dataset [19], where each ASR sentence corresponds
to a time stamp in the video, we extract a clip centered around the
identified time stamp with a ± 20 second window. The result is a
cropped video segment of 40 seconds, paired with an OSC text (in
the form of object + state transition). Finally, when multiple clips
from the same video illustrate the same OSC with overlapping start
and end times, we combine them into a single, extended clip. The
whole process is illustrated in Fig. 7.

3. The HowToChangeDataset
To establish the OSC taxonomy, we identify 20 most frequent state
transitions and the objects associated with these state transitions
that appear more than 200 times. Utilizing a 0.25 quantile thresh-
old for each state transition, we categorize the top 75% frequent
OSCs as known and the bottom 25% as novel, resulting in 318
known and 91 novel OSC categories in total. See Table 4 for
the complete OSC taxonomy. With these 318 known OSCs, we
compose the training set of HowToChange, encompassing 36,076
video segments from HowTo100M. Fig. 9 provides the detailed
distribution of HowToChange (Training).

3.1. Ground Truth Label Collection
For evaluation, we collect annotations from 30 trained professional
human annotators for a subset of 5,423 video clips from How-
ToChange, amounting to 62.5 hours of video. See Fig. 8 for the
annotation user interface. We collect an average of 13.3 annotated
videos per OSC category. The annotations for known and novel
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Figure 8. The annotation user interface. Annotators view a video paired with an OSC category, identified from the OSC mining process
(outlined in Sec. 3.3). They are instructed to either reject the video if it does not demonstrate the specified OSC, or to annotate the time
ranges corresponding to the initial, transitioning, and end states of the OSC shown in the video.

OSCs cap at 15 and 10, respectively. Fig. 10 provides the detailed
distribution of HowToChange (Evaluation).

The breakdown of annotated time ranges within these videos is
as follows: 19.8% for the initial state, 25.9% for the transitioning
state, and 16.9% for the end state, with the remaining categorized
as non-OSC-related background. Fig. 11 shows the distribution of
video duration (seconds) and the number of annotated time ranges
per state in the HowToChange (Evaluation) set. Importantly, the
distribution demonstrates the granularity of our annotations, with
a varied number of annotated time ranges per video. This is a
result of our guidelines that instruct the annotators to exclude any
time ranges where the OSC of interest is not observable, thereby
ensuring precise labeling.

4. Experiments
4.1. Experimental Setup
Datasets We conduct experiments on ChangeIt [50] and our
proposed HowToChange. Other related datasets are not included
due to their small scale and differing OSC definition [2], unavail-
ability for public access [31], or the absence of OSC category /
temporal labels necessary for our problem [17, 47]. Beyond the
conventional split of ChangeIt, we introduce a novel split designed
specifically for our open-world framework. The OSC taxonomy
is detailed in Table 5. Note the inherent challenge of this set-

ting: each state transition is associated with fewer than five ob-
jects. This scarcity of objects per state transition can significantly
impede the model’s ability to generalize the concept of states and
state transitions without becoming overly dependent on specific
objects, and reinforces the motivation for creating our new How-
ToChange dataset to augment this existing resource.

Evaluation For ChangeIt and ChangeIt (open-world), we ad-
here to the original dataset’s evaluation protocol, reporting action
and state precision@1 as the evaluation metrics. For our collected
HowToChange, while we also adopt state precision@1, due to our
definition that positions the midpoint between the initial and end
states as “transitioning states” rather than “action”, our evaluation
takes into account three distinct states, unlike the two states in
ChangeIt. In addition, since precision@1 solely evaluates a sin-
gle frame for each state within a video, we advocate for the use
of F1 score and precision over all frames to ensure a more holistic
evaluation. For each video, we compute the state precision@1, F1
score and precision for the present states (considering that a video
might not always contain all three states: initial, transitioning, and
end) and then compute their average over states. Subsequently, we
average these values across videos within a state transition cate-
gory and report the overall average for all state transitions. Lastly,
for the two open-world datasets, we present these metrics on both
known and novel OSCs.



Figure 9. Data distribution of HowToChange (Training). The y-axis denotes the number of annotated videos, and numbers in parentheses
represent the count of unique objects associated with each state transition. Our data collection process mines video OSCs that authentically
reflects the real-world’s long-tail.



Figure 10. Data distribution of HowToChange (Evaluation). Known and novel OSCs are shown in light blue and dark green, respectively.
HowToChange (Evaluation) presents a comprehensive evaluation benchmark, encompassing a diverse array of objects and state transitions.



State Transition Objects (known) Objects (novel)
blending banana, egg, tomato, strawberry, garlic, butter, oat, sugar, milk, ice, onion, date, cashew,

sauce, almond, cheese, mango
cream, pepper, avocado, ginger, coconut

browning onion, chicken, garlic, meat, beef, sausage, butter, crust, bacon, pork, meatball, mush-
room, tofu, turkey, steak, potato

bread, vegetable, sugar, apple, banana

chopping onion, garlic, tomato, apple, parsley, carrot, pepper, mushroom, bacon, cilantro, spinach,
cabbage, nut, banana, strawberry, cucumber, chocolate, rosemary, chive, shallot, peanut,
vegetable, herb, kale, celery, mint, dill, mango, chicken, walnut, leaf, potato, jalapeno,
zucchini, chili, egg, pecan, ginger, coriander, basil, avocado, broccoli, scallion, lettuce

cauliflower, almond, sausage, pineapple,
date, leek, butter, chilies, capsicum, olive,
thyme

coating chicken, potato, fish, apple, tofu, bread, shrimp, cake onion, butter, pasta
crushing garlic, biscuit, oreo, cooky, potato, ice, walnut, ginger, strawberry, cracker, tomato,

peanut, nut
almond, pepper, pineapple, onion

frying onion, garlic, potato, bacon, chicken, tortilla, egg, fish, plantain, tofu, bread, mushroom,
tomato, rice, sausage, batter, paneer, eggplant, shallot, beef, vegetable, shrimp, ginger,
okra, pork, banana

cauliflower, carrot, steak, meat, pepper

grating cheese, ginger, potato, carrot, garlic, nutmeg, orange, zucchini, cucumber, parmesan,
chocolate, apple, lemon, onion

cauliflower, tomato, butter, mozzarella, co-
conut

grilling chicken, steak, corn, fish, pineapple, salmon, onion, bread, tomato, zucchini, asparagus,
bacon, eggplant

shrimp, sausage, cheese, potato, pepper

mashing banana, potato, avocado, garlic, tomato, bean, butter, chickpea, strawberry berry, egg, cauliflower
melting butter, chocolate, cheese, sugar, marshmallow, ghee, caramel, jaggery, gelatin, margarine,

mozzarella, shortening, candy
honey, cream, ice

mincing garlic, ginger, onion, shallot, jalapeno, cilantro, parsley, beef, meat, scallion pepper, tomato, carrot
peeling banana, potato, apple, onion, garlic, plantain, egg, orange, ginger, carrot, cucumber,

lemon, tomato, squash, avocado, mango, eggplant, pumpkin, shrimp, pear, beet, zuc-
chini, prawn

pepper, shallot, peach, pineapple, kiwi

roasting pepper, peanut, garlic, tomato, eggplant, potato, coconut, onion, nut, pumpkin, almond,
chicken, vegetable, cauliflower, carrot, hazelnut, turkey, chickpea, corn, asparagus

broccoli, squash, beet, mushroom

rolling dough, fondant, pastry, meatball, clay, cake, bread, pasta, tortilla sausage, crust, cheese
sauteing onion, garlic, mushroom, vegetable, carrot, ginger, celery, pepper, tomato, shallot spinach, shrimp, chicken, potato
shredding chicken, cheese, cabbage, carrot, potato, zucchini, beef, pork, meat, lettuce coconut, mozzarella, parmesan, onion
slicing onion, tomato, apple, potato, mushroom, garlic, lemon, banana, strawberry, cabbage,

meat, zucchini, chicken, mango, pepper, cake, shallot, egg, sausage, watermelon, car-
rot, tofu, ginger, leek, beef, cucumber, scallion, eggplant, avocado, bread, pear, steak,
pineapple, radish, peach, bacon

jalapeno, celery, butter, olive, mozzarella,
orange, ham, lime, almond, cheese, pepper-
oni

squeezing lemon, lime, orange, garlic, potato, spinach, avocado, zucchini, tomato, grapefruit, cab-
bage

ginger, cucumber, onion, tofu

whipping cream, egg, butter, sugar, milk, potato, ganache, buttercream, batter, yogurt, frosting mascarpone, strawberry, meringue
zesting lemon, orange, lime, citrus, grapefruit clementine

Table 4. The OSC taxonomy for HowToChange encompasses 134 objects undergoing 20 distinct state transitions, resulting in 409 unique
OSCs (318 known and 91 novel).

State Transition Objects (known) Objects (novel)
peeling apple, dragon fruit,

onion, pineapple
avocado, corn, eggs,
garlic

frying bacon potatoes
pouring beer, tea juice, milk
wrapping tortilla gift/box
melting butter chocolate
cleaning pan shoes
tying tie, ribbon rope
cutting tile tree

Table 5. The OSC taxonomy for ChangeIt (open-world). Align-
ing with our open-world formulation, we propose a new split of
ChangeIt [50] that randomly splits objects associated with the
same state transition as known and novel.

Baselines For results on ChangeIt, we reference the metrics as
officially reported in their original papers. For results on ChangeIt

(open-world), we reimplement the baselines to accommodate our
newly introduced data split. As the LookForTheChange base-
line [50] requires a model for every OSC category, when evalu-
ating novel OSCs, we apply every model trained on OSCs with
the same state transition and report best model performance. For
the MultiTaskChange baseline [51], we train one multi-task model
across all known OSCs and evaluate on both known and novel
OSCs. On HowToChange, baseline results [50, 51] were obtained
using InternVideo features, not their originally proposed features,
to ensure comparability. Aligning with our own approach, we
adopt a shared vocabulary for both baselines. This means group-
ing OSCs with the same state transition as one category to enhance
generalization. On all datasets, following their original papers, we
enforce an additional casual ordering constraint during test time as
we observe better performance of the baselines in this setting. We
adopt adaptive weights for baaselines on open-world ChangeIt us-
ing the values from their original papers but not on HowToChange



Figure 11. Distribution of video duration (upper) and number of
annotated time ranges (lower).

due to no exemplar images.
Regarding the three zero-shot baselines (i.e., CLIP [44], Video-

Clip [61] and InternVideo [59]), we adopt both the vision and lan-
guage encoders to compute the similarity score between each (im-
age/video, text) pair. The OSC state description text is same as
adopted in our pseudo label generation process (Sec. 3.3). Based
on the similarity scores, we then conduct a grid search within each
state transition to pinpoint the optimal threshold distinguishing
background classes from OSC state categories, and report the best
value.

Implementation For training pseudo label generation, we first
employ GPT-4 [40] to automatically generate text descriptions for
each OSC category in the dataset. We then assign pseudo labels
to each video segment based on the similarity scores given by a
CLIP [44] model for ChangeIt and a VideoCLIP [61] trained on
HowTo100M [36] for HowToChange. We conduct a grid search
for the two pseudo label thresholds � and ⌧ to identify the best
value. We employ the AdamW optimizer with a learning rate
of 1e-4 and a weight decay of 1e-4. Models are trained using a
batch size of 64, over 50 epochs. Training takes a few hours on a
NVIDIA A100.

To ensure a thorough evaluation, we train both single-task and
multi-task variants of our approach. We note that the approach
is designed differently for ChangeIt and HowToChange, due to
their distinct characteristics: (1) For ChangeIt and ChangeIt (open-
world), the term single-task denotes training a separate model for
each OSC category (e.g. peeling apples), whereas multi-task de-
notes training a unified model for all OSC categories. Regard-
ing baseline methods, LookforTheChange [50] aligns with the
single-task paradigm while MultiTaskChange [51] belongs to the
multi-task one. (2) For HowToChange, where each state transi-
tion is associated with a much broader range of objects, we adopt
a shared state vocabulary to enhance model generalization, both
for our approach and the baselines. In this context, the single-task
model is developed for each state transition (e.g, peeling) rather
than each OSC (e.g. peeling apples). Consequently, a single-
task model is already capable of identifying states for any OSCs
that fall within the same state transition category. The multi-task

State Transition F1 (%) Prec (%) Prec.@1 (%)
known novel known novel known novel

chopping 46.5 44.1 43.7 42.4 58.3 58.2
slicing 48.6 45.6 49.7 44.9 68.6 63.7
frying 56.3 53.7 53.5 50.8 61.2 54.5
peeling 49.0 42.4 51.4 45.8 65.6 57.7
blending 42.2 45.2 43.4 50.7 59.1 66.7
roasting 36.5 40.8 40.3 44.4 59.2 64.6
browning 44.9 51.5 46.3 54.4 55.1 60.5
grating 52.5 51.3 51.6 50.4 66.6 65.0
grilling 54.6 53.7 54.0 49.6 67.8 61.0
crushing 39.2 32.2 38.3 28.0 58.9 52.8
melting 34.9 36.8 35.1 38.2 46.6 38.9
squeezing 54.4 54.6 54.0 54.6 61.0 66.1
sauteing 47.7 36.4 47.1 41.4 56.3 46.0
shredding 53.3 41.8 52.8 44.8 66.6 58.7
whipping 45.1 43.1 46.9 44.3 57.8 45.5
rolling 39.7 32.6 43.5 39.3 62.2 60.0
mashing 52.4 52.0 52.2 53.8 66.7 69.4
mincing 45.3 37.2 41.7 32.1 54.7 55.1
coating 35.5 30.0 37.8 28.5 55.1 48.3
zesting 49.6 36.2 49.3 35.3 65.9 70.8

Average 46.4 43.1 46.6 43.7 60.7 58.2

Table 6. Detailed per-state-transition results of VIDOSC on How-
ToChange.

model extends this concept to accommodate all 20 state transitions
in HowToChange. Both baselines, LookforTheChange [50] and
MultiTaskChange [51] fall into the single-task implementation as
we observe worse performance and prohibitive long training time
with the multi-task formulation.

Our multi-task model follows the same design as the single-
task, with the modification of an expanded output label dimen-
sion to encapsulate all categories. Essentially, the multi-task vari-
ant can be conceptualized as a hierarchical classification problem.
During testing, the model first determines the most probable state
transition (e.g., peeling) based on prediction scores. Subsequently,
it provides a prediction of fine-grained states for each time point
(e.g., initial, transitioning and end state of peeling, or background).
It’s important to note that while the single-task variant only per-
forms the latter prediction step, the multi-task variant adds the
ability to name the state transition. The multi-task model thus of-
fers the benefit of a single, unified model that can predict OSC
states for all categories of videos, eliminating the need for devel-
oping individual specialized models.

Finally, we emphasize that our model, irrespective of the vari-
ant, relies solely on video as input. This is in contrast to VLM
baselines (i.e., CLIP [44], VideoCLIP [61] and InternVideo [59]),
where the OSC text is required as input to calculate the cross-
modality similarity.

4.2. Results
Detailed per-state-transition results Supplementing Ta-
ble 2 in the main paper, we provide a detailed breakdown of VI-
DOSC’s performance on HowToChange per state transition in Ta-
ble 6. We observe superior results in transitions like mashing,
squeezing, and grilling, while transitions such as melting and coat-



Method
ChangeIt ChangeIt (open-world) HowToChange

State
Prec.@1

Action
Prec.@1

State Prec.@1 Action Prec.@1 F1 (%) Prec (%) Prec.@1 (%)
known novel known novel known novel known novel known novel

VIDOSC (multi-task) 0.44 0.69 0.43 0.29 0.75 0.63 40.7 37.9 41.8 39.0 56.8 54.8
VIDOSC (single-task) 0.57 0.84 0.56 0.48 0.89 0.82 46.4 43.1 46.6 43.7 60.7 58.2

Table 7. A comparison of the single-task and multi-task variant of VIDOSC. The multi-task variant offers the benefit of a single, unified
model capable of predicting fine-grained OSC states for videos of all OSC categories, while the single-task variant is optimized for each
individual OSC and demonstrates superior performance.
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Transitioning StateInitial State End State

Novel OSCs
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Figure 12. Top-1 frame predictions given by VIDOSC for the initial, transitioning, and end states, on HowToChange(Evaluation). VIDOSC
not only accurately localizes the three fine-grained states for known OSCs, but also generalizes this understanding to novel objects, which
are not observed during training.
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Figure 13. Comparison of model predictions on HowToChange
(Evaluation). The x-axis represents temporal progression through
the video. VIDOSC gives temporally smooth and coherent pre-
dictions that best align with the ground truth, significantly outper-
forming baselines in capturing the video’s global temporal context.

ing show comparatively weaker performance, possibly due to the
ambiguity in their OSC states. In addition, the known-novel OSC
gap is smallest for chopping, grating and mashing, whereas shred-
ding and sauteing exhibit larger performance discrepancies. In-
tuitively, state transitions like chopping and mashing share more
invariant representations across objects, with objects consistently
going from whole to pieces or a mashed state. In contrast, shred-
ding and sauteing may demonstrate less consistent transformation
patterns across different objects, leading to greater variability and
thus larger performance discrepancies. We hope these results pro-
vide insight for further analysis and development in this area.

Single-task vs Multi-task We train both single-task and
multi-task variants of VIDOSC, and compare their performance
in Table 7. While the multi-task model offers the convenience of
a unified framework that can handle various state transitions si-
multaneously, they generally underperform their single-task coun-
terparts. This performance disparity is a long-standing problem
in multi-task learning and could stem from multiple factors such

as varied convergence rates and potential competition among dif-
ferent OSCs, suggesting promising areas for future research. In
terms of the comparison of VIDOSC (multi-task) with the Mul-
tiTaskChange baseline [51], for ChangeIt (open-world), VIDOSC
achieves a +0.02 increase in state precision@1 and +0.03 in action
precision@1 for known OSCs, and a +0.07 and +0.01 increase for
novel OSCs, respectively. For the standard ChangeIt dataset, our
reimplementation of MultiTaskChange based on their officially re-
leased code achieves a state precision@1 of 0.40 and an action
precision@1 of 0.69, lower than the original paper’s reported 0.49
and 0.80. VIDOSC (multi-task) surpasses the reproduced num-
bers with a 0.04 improvement in state precision@1. Lastly, we
note that HowToChange features closely related state transitions
(such as crushing and mashing, melting and browning) as well as
fine-grained variations within a general transition, (such as various
cutting ways: chopping, slicing and mincing). These variations
present both challenges and opportunities for the advancement of
multi-task models, particularly in modeling the similarities and
fine distinctions among different state transition categories. We
leave it as future work.

Further Qualitative Results We provide more qualitative
results supplementing Fig. 4 and Fig. 5 in the main paper. Fig. 12
showcases more examples of VIDOSC’s top-1 predictions on
HowToChange (Evaluation). VIDOSC gives correct predictions
for various state transitions, across both known and novel objects.
In addition, Fig. 13 provides more examples of VIDOSC’s predic-
tions from a global perspective. Compared with all approaches,
VIDOSC consistently delivers temporally coherent predictions
that closely align with the ground truth labels. All these results
help demonstrate the strong performance of VIDOSC.

Interpretability on Object Relations VIDOSC provides
interpretable insights on how object relate to each other during
specific state transitions. To illustrate this, we calculate features
that belong to the transitioning state of “crushing”, averaged over
objects across all test videos. We then compute a feature distance
matrix from these object features, as depicted in Fig. 14. While
VIDOSC is purely video-based and has no access to ground truth
object names, the feature embeddings it produces well captures the
relations between each object pair during the “crushing” transition.
For instance, crushing cracker is more similar to crushing oreo or
biscuit than to crushing pineapple, which aligns with our intuition.
Furthermore, the heatmap reveals how VIDOSC effectively lever-
ages known object relationships to reason about novel objects. For
example, the novel object “almond” is closet in feature space to
“walnut” and “peanut” among all known objects.

Pseudo Label Analysis The pseudo label thresholds � and ⌧
in Section 3.3 are decided via a hyperparameter search. Figure
15 illustrates the process, showing F1 scores for different � and ⌧
for the state transition of slicing and sauteing. According to this
analysis, we set pseudo label thresholds ⌧ = 12 and � = 0 for the
state transition of slicing and ⌧ = 6 and � = 0.05 for sauteing. We
repeat this process for all other state transitions and for zero-shot
baselines as well for a fair comparison.

In addition, we experiment with no ordering constraint en-
forced in pseudo label generation (Section 3.3) on HowToChange.
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Figure 14. Distance matrix between object features produced by
VIDOSC during the “crushing” process. A lighter color indicates
smaller feature distance, and object pairs with relative small dis-
tance are marked by a circle. The heatmap offers interpretability
on object relations during a state transition and provides insight on
how the model generalizes from known to novel objects.

Method F1 (%) Prec (%) Prec.@1 (%)
known novel known novel known novel

CLIP [44] 26.9 25.4 27.3 26.6 47.5 47.5
VIDOSC (CLIP) 35.5 34.1 38.6 36.3 51.1 48.5
Improvement +8.6 +8.7 +11.3 +9.7 +3.6 +1.0

VideoCLIP [61] 36.6 34.3 39.7 38.5 48.3 44.8
VIDOSC (VideoCLIP) 46.4 43.1 46.6 43.7 60.7 58.2
Improvement +9.8 +8.8 +6.9 +5.2 +12.4 +13.4

Table 8. A comparison of VIDOSC using pseudo labels provided
by CLIP [44] and VideoCLIP [61]. VIDOSC is a flexible frame-
work can be combined with different VLMs. Employing a better
VLM (VideoCLIP over CLIP) further enhances VIDOSC’s per-
formance.

Method F1 (%) Prec (%) Prec.@1 (%)
known novel known novel known novel

VIDOSC (no ordering) 41.1 36.6 41.7 37.4 52.1 47.5
VIDOSC 46.4 43.1 46.6 43.7 60.7 58.2

Table 9. A comparison of VIDOSC with and without ordering
constraint enforced in pseudo label generation. Enforcing causal
ordering leads to better pseudo labels and performance gains.

Table 9 underscores the positive impact of enforcing causal order-
ing, since otherwise the VLM-derived labels would be noisier and
unordered in nature.

Lastly, we compare the performance of VIDOSC using pseudo
labels generated by two different VLMs, CLIP [44] and Video-

Figure 15. Analysis of pseudo label thresholds � and ⌧ for the state
transition of (a) slicing and (b) sauteing.

CLIP [61] on HowToChange. As demonstrated in Table 8, VI-
DOSC learns to generalize and improve upon the pseudo labels
it receives during training, outperforming the VLM baseline by
a great margin. Notably, VideoCLIP yields better performance
than CLIP. Correspondingly, VIDOSC incorporating VideoCLIP
also surpasses VIDOSC using CLIP, achieving additional gains
over the VideoCLIP baseline. This underscores the potential of
VIDOSC: it can be synergistically combined with any advanced
VLM to further augment performance.

Task-specific model vs general VLMs. We conclude with
a discussion comparing VIDOSC with all-purpose VLMs.

We highlight that our VIDOSC addresses unique challenges in
the open-world video OSC problem, which current VLMs are not
yet equipped to handle. Long video temporal reasoning. Our task
involves understanding long videos (input videos range from 40 to
140 seconds, as shown in Figure 11). This requires long tempo-
ral reasoning beyond the capabilities of current VLMs, which are
primarily image-based or limited to processing short video clips.
For instance, the state-of-the-art video foundation model Intern-
Video [59], which we use for feature extraction and as a baseline,
is constrained to processing short clips of a few seconds. Fine-
grained state understanding. The core of our challenge lies in dis-
tinguishing fine-grained states within an OSC process. This level
of detail requires a nuanced understanding that general VLMs cur-
rently lack. While they may excel in recognizing objects and basic
actions, discerning subtle state changes in a process is a frontier
yet to be fully explored by these models.

To substantiate our claims, we experiment with the advanced
GPT-4V [40]. When tasked with predicting OSC states for a 40-
second video, GPT-4V fails to produce meaningful outputs, as
shown by replies like “I’m sorry, but I can’t provide assistance
with the task as described.”, “I cannot process the request as it in-
volved 40 separate images.” or “Unfortunately, I cannot assist with
labeling or categorizing images in sequences.” This underscores
the current limitations of VLMs in long video modeling. Sim-
plifying the task to single-frame state classification, we present
prediction results of GPT-4V (on 3 individual runs) and ours in
Figure 16. While GPT-4V correctly classifies the background cat-
egory in most cases, it shows great instability in distinguishing the
three OSC states. This highlights its limitations in fine-grained
state understanding. Note that we do not have access to GPT-4V’s
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Figure 16. Comparison of VIDOSC with GPT4-V on a 40-second
test video. VIDOSC provides more temporally coherent predic-
tions.

underlying features and are limited to interacting via API.
Looking forward, we fully acknowledge and embrace the

power of VLMs, which drives our automatic pseudo labeling ap-
proach. Benefiting from the rapid progress of general-purpose
VLMs, VIDOSC is specialized in long and fine-grained video un-
derstanding, an area uncharted by VLMs; our work helps lay ex-
actly the missing groundwork.
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