
NEAT: Distilling 3D Wireframes from Neural Attraction Fields

Supplementary Material

The supplementary document is summarized as follows:

• Appx. A gives a summary of the supplementary video.

• Appx. B elaborates on the technical details (introduced
in Sec. 3.2 of the main paper) of NEAT optimization.

• Appx. C supplies the details for the final step of distil-
lation for 3D wireframe reconstruction (introduced in
Sec. 3.3 of the main paper).

• Appx. D presents the additional experiments on the
ABC dataset [14] to discuss the performance given the
ground-truth annotations of 3D wireframes.

• Appx. E quantitatively reports the potential of NEAT
for view synthesis with 3D Gaussian Splatting on the
DTU dataset.

• Appx. F shows the miscellaneous stuff.

A. Video

In our supplementary video, we begin by demonstrating the
core concepts of our research. Using a basic object from
the ABC dataset as an illustrative example, we showcase
the 3D line segments learned through the NEAT field, the
functionality of the global junction perceiving module, and
the construction of the final 3D wireframe model. Fol-
lowing this, the video highlights the learning of redundant
3D line segments and the optimization process for global
junctions, using the DTU-24 dataset as a case study. The
video concludes with qualitative evaluations on both the
DTU and BlendedMVS datasets, providing visual support
to the quantitative analyses of the main paper.

B. Optimization of NEAT

(a) Input images (b) 2D Wireframes & rendering pixels

Figure 10. A toy example on the ABC dataset [14] for the
foreground pixels defined by the detected 2D wireframes.
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(a). Foreground Pixels defined by 2D wireframes (τd = 5)

PSNR: 25.46 PSNR: 26.31 PSNR: 21.37

(b). Rendered Images by NEAT

PSNR: 27.40 PSNR: 28.52 PSNR: 26.62

(c). Rendered Images by VolSDF [49]

Figure 11. A comparison for volumetric rendering learned from
wireframe-related rays (pixels) vs. the vanilla ray sampling. In (a),
we show the 2D line segments detected by HAWPv3 [46] and the
used foreground pixels in each view. “MR” denotes the mask ratio
(the number of foreground pixels among all the pixels). In (b), we
show the corresponding views rendered by NEAT that are learned
by the foreground pixels in (a). In the bottom (c), we show the
rendered images by VolSDF [49] as the reference. In (b) and (c),
the PSNR values are marked at the bottom for each view.

B.1. Details on Line Segment Rendering

Our method renders 3D line segments based on the detected
2D wireframes in each view, distinguishing itself from
conventional volume rendering approaches that utilize all
pixels (rays) for rendering. As demonstrated in Fig. 10
with a toy example from the ABC dataset, only pixels with
“white” colors are engaged in the rendering process of 3D
line segments. This technique is inspired by the attraction
field representations [25, 43–46], where the involved pixels
are determined by the perpendicular distance between a
point and a line segment. We set a threshold, τray (as
mentioned in Sec. 3.1 of our main paper), to differentiate
the rendering pixels as foreground while disregarding the
non-rendering pixels as background. Practically, τray is
usually set to 5 for training/optimization, and reduced to 1
to minimize computational costs. We refer to this approach
as wireframe-driven ray sampling.

To demonstrate the effectiveness of wireframe-driven ray
sampling, we conducted a series of experiments on scene
24 from the DTU dataset [1]. Fig. 11 illustrates

https://youtu.be/qtBQYbOpVpc


Table 3. The influence of wireframe reconstruction results from
different distance thresholds. The larger τd value is, the more line
segments are involved in the optimization/learning.

ACC-J↓ ACC-L↓ COMP-L↓ #Lines #Junctions MR PSNR

τd = 1 0.853 0.764 6.137 785 540 97.49% 17.79
τd = 5 0.639 0.594 5.910 860 528 89.70% 21.55
τd = 20 0.578 0.596 6.158 694 508 66.10% 24.68

the feasibility of optimizing coordinate MLPs using this
sampling technique. As depicted in Fig. 11(a), by masking
over 80% of the pixels (using a distance threshold of 5
pixels), we can still effectively optimize coordinate MLPs,
leading to the reasonable outcomes shown in Fig. 11(b).

In addition to rendering results, we observed that in-
creasing the distance threshold leads to a reduction in the
number of line segments and junctions. As detailed in
Tab. 3, setting the distance threshold to τd = 20 results in
fewer 3D lines and junctions. Although the ACC errors are
marginally reduced, there is an increase in completeness.
Conversely, when the distance threshold τd is set to 1, a
performance degradation is noted across all metrics due to
insufficient supervision signals.

B.2. The Number of Global Junctions

The number of global junctions is determined heuristically
to encompass all potential 3D junctions. Based on ob-
servations from both the DTU and BlendedMVS datasets,
where the detected 2D line segments are in the hundreds,
we set the estimated number of 3D junctions to 1024. In
Tab. 4, we present experiments conducted on the DTU-24
scene with varying numbers of junctions, denoted as N , to
assess performance differences. The results indicate that
increasing the number of possible global 3D junctions to
a larger value (e.g., N = 2048) yields only a marginal
increase in the count of learned 3D line segments and
junctions in the final wireframe models. Conversely, a
smaller N tends to result in incomplete 3D wireframe
models.

N # 2D Juncs. # 3D Junctions # 3D Lines ACC-J ACC-L COMP-L

1024 (default) 212 (min)
297 (max)
258.2 (avg)

549 860 0.639 0.549 5.910

N = 128 99 93 0.422 0.440 8.541
N = 512 397 641 0.526 0.574 6.302
N = 2048 624 983 0.656 0.599 5.849

Table 4. The performance influence of wireframe reconstruction
from different configuration of the number of 3D junctions during
optimization.

B.3. Additional Implementation Details

Network Architecture. The coordinate MLPs used in our
NEAT approach are derived from VolSDF [49], which con-
tains three coordinate MLPs for SDF, the radiance field, and

the NEAT field. For the MLP of SDF, it contains 8 layers
with hidden layers of width 256 and a skip connection
from the input to the 4th layer. The radiance field and the
NEAT field share the same architecture with 4 layers with
hidden layers of width 256 without skip connections. The
proposed global junction perceiving (GJP) module contains
two hidden layers and one decoding layer as described in
the code snippets of Sec. 1 in our main paper.

Hyperparameters. The distance threshold τd about the
foreground pixel (ray) generation is set to 5 by default.For
the number of global junctions (i.e., the size of the latent),
we set it to 1024 on the DTU and BlendedMVS datasets.
When the scene scale is larger (e.g., a scene from ScanNet
mentioned in Fig. 5 of the main paper), the number of
global junctions is set to 2048. For DBScan [7], we use the
implementation from sklearn package, set the epsilon
(for the maximum distance between two samples) to 0.01
and the number of samples (in a neighborhood for a point
to be considered as a core point) to 2.

C. The Final Distillation Step of NEAT
This section elaborates on the final distillation step required
in our NEAT methodology for 3D wireframe reconstruc-
tion, with a particular focus on the extensive use of global
junctions. We aim to provide a detailed insight into this
crucial phase of the NEAT process.

To begin with, let us consider the challenge inherent
in the junction-driven finalization of NEAT. As depicted
in Fig. 12, using a toy ABC scene as an example, we
observe that a considerable number of 3D line segments
are rendered and aggregated across different views. Con-
currently, 3D junctions are dynamically distilled from the
NEAT fields. While a simple approach to combine these 3D
junctions with the redundant 3D line segments might seem
viable, it is critical to address the potential misalignments
between the junctions and line segments. To resolve this
issue, we employ a least squares optimization combined
with an SDF-based refinement scheme. This approach is
designed to precisely adjust the position of 3D junctions,
thereby ensuring an accurate and coherent reconstruction of
the 3D wireframe.

C.1. Least Square Optimization

To be convenient for readers, we copy Eq. (9) in our main
paper to Eq. (10),
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∑
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(10)
which is the main objective function to adjust the junc-
tion positions according to the observation from the op-



Table 5. An Ablation study of the SDF-based 3D Junction Refinement on the DTU dataset for the reconstructed 3D wireframes. ACC-J
and ACC-L are the evaluation for junctions and line segments.

NEAT (Final) NEAT (w/o Non-Linear Optimization) NEAT (w/o SDF-based Refinement)
Scan ACC-J ↓ ACC-L ↓ #Lines #Junctions ACC-J ↓ ACC-L ↓ #Lines #Junctions ACC-J ↓ ACC-L ↓ #Lines #Junctions

Avg. 0.772 0.800 624.2 503.5 1.145 0.872 907.7 589.7 1.275 1.044 729.1 514.3
16 0.826 0.788 729 554 0.834 0.829 852 566 1.190 1.045 751 570
17 0.775 0.670 738 546 0.982 0.765 991 651 1.047 0.836 753 557
18 0.643 0.687 701 596 0.930 0.759 993 689 1.040 0.927 821 609
19 0.699 0.692 809 510 0.956 0.703 994 656 1.051 0.863 714 518
21 0.904 0.692 809 571 0.960 0.725 981 654 1.119 0.848 816 581
22 0.634 0.691 758 596 0.896 0.748 939 684 0.976 0.897 769 603
23 0.588 0.619 771 597 0.840 0.703 933 670 0.926 0.821 774 602
24 0.639 0.594 860 549 0.818 0.620 1008 618 0.872 0.748 866 556
37 1.482 1.086 420 405 1.804 1.477 636 565 2.014 1.860 440 425
40 0.630 1.035 137 469 1.342 0.808 1672 591 1.382 0.983 1241 475
65 0.721 1.035 137 171 1.582 1.178 191 221 1.631 1.340 147 185

105 0.720 1.013 621 478 1.793 1.143 702 511 2.053 1.360 657 490

Figure 12. Two different views of the reconstruction of 3D
wireframe on the toy scene of ABC dataset before the final
distillation step.

timized/learned NEAT field. Here, we mathematically
define the alignment cost between the junction-driven 3D
line segments l0u,v = (Ju, Jv) and its i-th NEAT-field
observation liu,v = (xi

u,x
i
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where ⟨·, ·⟩ is the inner product between two 3D vectors,
and the function proj(liu,v; Jv) projects the point Jv onto
the infinite 3D line passing through the line segment liu,v .
In Tab. 5, we report the performance changes by disabling
the non-linear optimization on the DTU dataset, which will
result in inferior 3D wireframes with larger ACC errors for
both junctions and line segments.

C.2. SDF-based 3D Junction Refinement

Following the non-linear optimization, we employ an SDF-
based refinement scheme to further enhance the localization
accuracy of junctions. Specifically, for an initial 3D

Table 6. The performance change w.r.t. the visibility threshold on
the DTU dataset.

Vis Metric 16 17 18 19 21 22 23 24 37 40 65 105 Avg.

1

ACC.↓ 0.788 0.670 0.687 0.692 0.692 0.691 0.619 0.594 1.086 1.035 1.035 1.013 0.800

COMP.↓ 5.414 5.050 5.380 4.653 4.653 5.087 5.599 5.910 7.536 8.783 8.783 6.430 6.106

Avg. Len. 22.3 23.6 26.7 27.4 27.4 22.8 26.9 27.0 27.9 23.2 23.2 27.5 25.5

#Lines 729.0 738.0 701.0 809.0 809.0 758.0 771.0 860.0 420.0 137.0 137.0 621.0 624.2

2

ACC.↓ 0.770 0.669 0.650 0.642 0.686 0.678 0.604 0.585 1.251 0.755 1.005 1.011 0.776

COMP.↓ 5.493 5.067 5.043 5.562 4.742 5.208 5.670 6.032 7.517 7.027 9.131 6.643 6.095

Avg. Len. 22.3 23.6 24.4 27.0 27.6 22.8 26.9 27.1 27.4 49.8 22.8 27.0 27.4

#Lines 711.0 729.0 789.0 667.0 784.0 737.0 756.0 840.0 391.0 1140.0 124.0 572.0 686.7

3

ACC.↓ 0.729 0.642 0.640 0.629 0.652 0.639 0.590 0.575 1.188 0.748 0.909 0.981 0.743

COMP.↓ 5.551 5.095 5.117 5.742 4.843 5.357 5.720 6.113 7.473 7.182 9.076 6.785 6.171

Avg. Len. 22.5 23.7 24.5 27.2 27.8 22.7 26.9 27.2 27.7 49.9 22.8 26.9 27.5

#Lines 689.0 708.0 765.0 642.0 751.0 708.0 748.0 826.0 371.0 1091.0 112.0 544.0 662.9

4

ACC.↓ 0.704 0.619 0.623 0.617 0.607 0.632 0.583 0.556 1.118 0.735 0.891 0.945 0.719

COMP.↓ 5.572 5.256 5.222 5.838 5.021 5.458 5.825 6.168 7.612 7.164 9.220 7.004 6.280

Avg. Len. 22.5 23.8 24.8 27.5 28.0 22.9 27.0 27.3 27.7 50.5 22.8 26.3 27.6

#Lines 672.0 679.0 737.0 617.0 723.0 683.0 721.0 806.0 347.0 1052.0 97.0 501.0 636.3

junction Ji ∈ R3 and an optimized SDF dΩ(·), we refine
the location of Ji using the following equation:

J refined
i = Ji − dΩ(Ji) · ∇dΩ(Ji), (12)

where ∇dΩ represents the normal direction of the surface at
the point Ji.

To assess the impact of this SDF-based refinement on
junctions, we conducted an ablation study comparing 3D
wireframe models with and without the SDF refinement.
The results, presented in Tab. 5, clearly demonstrate the
necessity of this refinement step for achieving significantly
improved results.

C.3. Visibility Checking

As detailed in Sec. 3.3 of the main paper, we evaluate
the reconstructed 3D line segments by projecting them
onto 2D images from each view. This process involves
computing both the angular and perpendicular distances
between the projected 3D line segments and the detected
2D line segments. A 3D line segment is considered to be
supported by a 2D detection if it aligns within an angular
distance of 10 degrees and a perpendicular distance of
5 pixels, with a minimum overlap ratio of 50%. This
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Figure 13. Qualitative Comparisons on ABC objects.

methodology allows us to determine the visibility of each
3D line segment and to filter out those that are invisible as
false alarms.

In our standard approach, the visibility threshold for each
line segment is set to 1, aiming to achieve a more complete
reconstruction. Moreover, we explore the impact of varying
this visibility threshold from 1 to 4 on the DTU dataset. The
findings, as summarized in Tab. 6, indicate that increasing
the visibility threshold results in an improvement in the
ACC metric, while the COMP metric increases.

D. Experiments on the ABC Dataset
Because the 3D wireframe annotations are very difficult to
obtain for real scene images, to better discuss the problem
of 3D wireframe reconstruction and analyze our proposed
NEAT approach, we conduct experiments on objects from
ABC Datasets as it provides 3D wireframe annotations.

Data Preparation. We use Blender [4] to render 4 objects
from the ABC dataset. The object IDs are mentioned in
Tab. 7. For each object, we first resize it into a unit cube
by dividing the size of the longest side and then moving
it to the origin center. Then, we randomly generate 100
camera locations, each of which is distant from the origin by√
1.52 + 1.52 ≈ 2.1213 units. The setting of the distance,√
1.52 + 1.52, is from our early-stage development for the

rendering, in which we set a camera at (0, 1.5, 1.5) location.
By setting the cameras to look at the origin (0, 0, 0), we
obtain 100 camera poses. Considering the fact that the
ABC dataset is relatively simple, we set the focal length

to 60.00mm to ensure the object is slightly occluded for
rendering images. The sensor width and height of the
camera in Blender are all set to 32mm. The ground truth
annotations of the 3D wireframe are from the corresponding
STEP files. For the simplicity of evaluation, we only
keep the straight-line structures and ignore the curvature
structures to obtain the ground truth annotations. The
rendered images are with the size of 512× 512.

Baseline Configuration. Fig. 13 illustrates the rendered
input images for the used four objects. Because the
rendered images are textureless and with planar objects,
the dependency of those baselines on the correspondence-
based sparse reconstruction by SfM systems [29] is hardly
satisfied to produce reliable line segment matches for 3D
line reconstruction. Accordingly, we set up an ideal base-
line instead of using Line3D++ [12] and LiMAP [17] for
comparison. Specifically, we first detect the 2D wireframes
for the rendered input images and then project the junctions
and line segments of the ground-truth 3D wireframe models
onto the 2D image plane. For the 2D junctions, if a
projected ground-truth junction can be supported by a
detected one within 5 pixels in any view, we keep the
ground-truth junction as the reconstructed one in the ideal
case. For the 2D line segments, we compute the minimal
value for the distance of the two endpoints of a detected
line segment to check if it can support a ground-truth 3D
line. The threshold is also set to 5 pixels. Then, we count
the number of reconstructed 3D line segments and junctions
in such an ideal case.

Evaluation Metrics. For our method, we compute the
precision and recall for the reconstructed 3D junctions
and line segments under the given thresholds. Because
the objects (and the ground-truth wireframes) are normal-
ized in a unit cube, we set the matching thresholds to
{0.01, 0.02, 0.05} for evaluation. For the matching distance
of line segments, we use the maximal value of the matching
distance between two endpoints to identify if a line segment
is successfully reconstructed under the specific distance
threshold. For the ideal baseline, we report the number
of ground-truth primitives (junctions or line segments), the
number of reconstructed primitives, and the reconstruction
rate.

Results and Discussion. Tab. 7 quantitatively summa-
rizes the evaluation results and the statistics on the used
scenes. As it is reported, our NEAT approach could
accurately reconstruct the wireframes from posed multiview
images. The main performance bottleneck of our method
comes from the 2D detection results. As shown in the ideal
baseline, by projecting the 3D junctions and line segments
into the image planes to obtain the ideal 2D detection



Evaluation Results Ideal Baseline
ID P0.01 P0.02 P0.05 R0.01 R0.02 R0.05 #GT # Reconstructed Recon. Rate

4981 J 0.706 0.765 0.882 0.750 0.812 0.938 32 28 0.875
L 0.758 0.758 0.758 0.521 0.521 0.521 48 41 0.854

13166 J 0.889 0.889 0.889 1.000 1.000 1.000 16 16 1.000
L 1.000 1.000 1.000 1.000 1.000 1.000 24 24 1.000

17078 J 0.400 0.629 0.686 0.583 0.917 1.000 24 23 0.958
L 0.408 0.653 0.714 0.556 0.889 0.972 36 32 0.889

19674 J 0.969 1.000 1.000 0.969 1.000 1.000 32 32 1.000
L 0.969 1.000 1.000 0.969 1.000 1.000 48 40 0.833

Table 7. Evaluation Results and some Statistics on ABC objects.
In each object, we evaluate the precision and recall rates for
junctions (J) and line segments (L). For the ideal baseline, we
count the number of ground-truth primitives, the number of
reconstructed 3D primitives, and the reconstruction rate in the
ideal baseline.

results, the 2D detection results by HAWPv3 [46] did not
perfectly hit all ground-truth annotations. Furthermore,
suppose we use the hit (localization error is less than 5
pixels) ground truth for 3D wireframe reconstruction, there
is a chance to miss some 3D junctions and more 3D line
segments. In this sense, given a relaxed threshold of the
reconstruction error for precision and recall computation,
our NEAT approach is comparable with the performance of
the ideal solution. For the first object (ID 4981), because
of the severe self-occlusion, some line segments are not
successfully reconstructed for both the ideal baseline and
our approach. For object 17078, our NEAT approach
reconstructed some parts of the two circles that are excluded
from the ground truth, which leads to a relatively low
precision rate. Fig. 13 also supported our results.

E. 3D Gaussians with NEAT Junctions

In this section, we extend the application of our NEAT
framework to 3D Gaussian Splatting, as proposed by Kerbl
et al. [13], by substituting the initial point cloud derived
from Structure-from-Motion (SfM) with the junctions iden-
tified by NEAT. This experiment is designed to showcase
the efficacy of NEAT junctions as a compact initialization
method for 3D Gaussian Splatting. Using only a few hun-
dred points, our NEAT junctions demonstrate an enhanced
fitting ability on the DTU dataset, as evidenced by improved
metrics in both Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM).

The experimental results on 12 scenes from the DTU
dataset are detailed in Tab. 8. It is observed that by
initializing the 3D Gaussians with NEAT junctions, there
is a notable improvement in performance: PSNR increases
by 0.38 dB and SSIM improves by 0.0003 points. This
finding underscores the effectiveness of NEAT junctions in
providing a more precise and compact starting point for 3D
Gaussian Splatting.

Table 8. Quantitative comparison between the NEAT junctions
and SfM points for the initialization of 3D Gaussian Splatting on
the DTU dataset.

Scene ID
NEAT Junctions SfM Points (by COLMAP [29])

PSNR ↑ SSIM ↑ #Points
(init)

#Points
(7k)

#Points
(30k) PSNR ↑ SSIM ↑ #Points

(init)
#Points

(7k)
#Points
(30k)

DTU-16 28.7 (+0.7) 0.889 (+0.006) 554 603k 1,496k 28.0 0.883 22k 558k 1,048k
DTU-17 29.2 (+0.5) 0.898 (+0.005) 546 903k 2,279k 28.7 0.893 24k 893k 1,305k
DTU-18 29.3 (+0.4) 0.901 (+0.004) 596 629k 1,234k 28.9 0.897 18k 581k 1,078k
DTU-19 29.6 (+0.4) 0.893 (-0.001) 510 475k 1,140k 29.2 0.894 19k 561k 756k
DTU-21 28.7 (+0.2) 0.898 (+0.004) 571 725k 1,657k 28.5 0.894 19k 698k 1,528k
DTU-22 29.1 (+0.2) 0.892 (+0.005) 596 641k 1,455k 28.9 0.887 21k 615k 1,113k
DTU-23 28.4 (+0.4) 0.886 (+0.006) 597 974k 2,243k 28.0 0.880 25k 850k 1,667k
DTU-24 31.1 (+0.9) 0.909 (+0.008) 549 587k 1,181k 30.2 0.901 13k 528k 852k
DTU-37 28.2 (+0.5) 0.875 (+0.000) 405 420k 1,180k 27.7 0.875 27k 409k 713k
DTU-40 30.6 (+0.2) 0.862 (+0.002) 422 520k 1,403k 30.4 0.860 32k 515k 1,070k
DTU-65 32.4 (+0.2) 0.855 (-0.001) 171 139k 294k 32.2 0.856 11k 150k 208k
DTU-105 30.8 (-0.1) 0.852 (-0.001) 478 165k 238k 30.9 0.853 23k 169k 216k

Avg. 29.68 (+0.38) 0.884 (+0.003) 499.58 565k 1,317k 29.30 0.881 21k 544k 963k

F. Miscellaneous
F.1. Evaluation Metrics

The Definition of ACC and COMP Metrics. We follow
the official evaluation protocol of the DTU dataset [1] to
compute the reconstruction accuracy (ACC) and complete-
ness (COMP), which is defined to

ACC = mean
p∈P

(
min

p∗∈P∗
∥p− p∗∥

)
, (13)

and

COMP = mean
p∗∈P∗

(
min
p∈P

∥p− p∗∥
)
, (14)

where P and P ∗ are the point clouds sampled from the
predictions and the ground truth mesh.

F.2. Information of Used BlendedMVS Scenes

The scene IDs and their MD5 code of the BlendedMVS
scenes are:

• Scene-01: 5c34300a73a8df509add216d

• Scene-02: 5b6e716d67b396324c2d77cb

• Scene-03: 5b6eff8b67b396324c5b2672

• Scene-04: 5af28cea59bc705737003253


