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Supplementary Material

A. Method Details
A.1. NVF architecture and training details

NVF is an augmentation of a NeRF consisting of two addi-
tional MLP heads for predicting RGB variance and visibility.
Specifically, we implement NVF on top of a nerfstudio [10]
implementation of Instant-NGP [6], where the color MLP
head represents µc. Alongside the color head is a MLP head
for RGB variance, outputting a 3x1 vector Qc. Similarly, the
visibility MLP head is attached alongside the density head.
For a visualization of the architecture, see Appendix Fig. 1.
In practice, we train Instant-NGP, variance, and visibility
separately and in sequence. First, we train the NeRF back-
bone for 5000 iterations using a learning rate of 0.01 and
4096 rays per batch. Next, the variance head is trained for
500 iterations using a learning rate of 0.001 and 4096 rays
per batch. Finally, the visibility head is trained for 500 itera-
tions using a learning rate of 0.001 and 65536 samples per
batch. We train all modules using the Adam optimizer [5].

A.2. Entropy computation details

Joint Entropy of the Camera Observation. We discuss the
details on the computation of the joint entropyH(Zp) as for-
mulated in in Eq. (13). For simplicity in this discussion, we
denote the joint entropy asH(Z) in this section. We model
the joint observation of all rays as a Bayesian network, where
the observation of each pixel only depends on its adjacent
neighboring pixel. Consequently, the joint probability can be
factorized as p(z) =

∏
mn p(zmn|zm+1,n, zm,n+1). Note

that for the sake of brevity, boundary terms where a pixel
lies at the image edge are omitted here. Then, by applying
the chain rule of entropy[1], we obtain:

H(Z) =
∑
m,n

H(Zmn|Zm+1,n,Zm,n+1) (1)

We then apply the inequalityH(Zmn|Zm+1,n,Zm,n+1) ≤
H(Zmn|Zm+1,n) and H(Zmn|Zm+1,n,Zm,n+1) ≤
H(Zmn|Zm,n+1). These allow us to derive an upper bound
forH(Z):

H(Z) ≤
∑
m,n

1

2

(
H(Zm,n|Zm+1,n) +H(Zm,n|Zm,n+1)

)
(2)

Then we connect the conditional entropy with the corre-
lation between the two adjacent rays. We let

ρm+1,n = 1− H(Zm,n|Zm+1,n)

H(Zm+1,n)
(3)

where ρ is as a measure of correlation. Specifically, a ρ
value closer to 1 indicates Zm,n and Zm+1,n are strongly
correlated, whereas a ρ tends to 0 suggests they are not
correlated. It is important to note that this definition of corre-
lation, based on entropy, differs from the widely recognized
Pearson correlation coefficient, and is commonly used in
quantum information[2]. Consequently, we can obtain the
upper bound:

H(Z) ≤
∑
m,n

(1− ρmn)H(Zmn) (4)

We assume that the correlation between two points in the
scene can be modeled as a function of their spatial distance,
a concept commonly referred to as the correlation function
in statistical physics [9]. We adopt a truncated least-square
form for this correlation function.

ρ(x) =

{
1− (xξ )

2 , if x < ξ,

0 , otherwise
(5)

This formula indicates that two points located within a
distance threshold ξ of each other are strongly correlated,
whereas those beyond this threshold are considered indepen-
dent. It is noteworthy that this term bears resemblance to
the correlation function ρ(x) = exp(−x

ξ ), which is com-
monly applied in statistical physics [9], and ξ represents the
correlation length. Empirical evaluations indicate that the
use of either correlation function expression significantly
outperforms the scenario where all rays are assumed to be
independent (ρ = 0). Notably, a marginal improvement was
observed when utilizing Eq. 5.

Therefore, we can approximate the correlation between
two adjacent rays based on their expected depth, expressed
as ρmn = ρ(dmn∆ϕ), where ∆ϕ is the angular resolution of
each pixel, dmn is the expected depth of ray at pixel (m,n).
This implies that when the camera is closer to an object,
the observations in adjacent pixels of the camera exhibit
stronger correlation. Hence the actual total information gain
is smaller than the sum of the information gain of each pixel.
Accordingly, the correction function fcorr in Eq. 13 can be
defined as:

fcorr(H(Zmn); dmn) = ρ(dmn∆ϕ)H(Zmn) (6)

In our experiments, we let the correlation length ξ = kD∆ϕ,
where D represents the diameter of the coarse bounding box
enclosing the object, and k is a hyperparameter, and we let
k = 0.25.

Entropy of GMM. We then introduce the details to
compute the entropy for each ray, which is modeled as
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Figure 1. NVF Architecture: The MLP block consists of fully connected layers that use the ReLU activation function. The numbers inside
the block denote the size of the layer. The final output from the visibility (v) MLP and RGB (µc) MLP are passed through the sigmoid
activation function while the RGB Variance (Qc) MLP uses softplus activation

a Gaussian Mixture Model (GMM). For the sake of sim-
plicity, we denote the GMM’s distribution as p(x) =∑

i wiN (x;µi,Qi). We use the upper bound proposed
in [4] to closely approximate the entropy of the GMMH(X):

H(X) ≤
∑
i

wi

(
− logwi +

1

2
log

(
(2πe)N |Qi|

))
(7)

This upper bound is expected to provide a more accurate
approximation of the true entropy of the GMM compared
to the conventional method which approximates the entropy
using a single Gaussian that matches the first two moments of
the GMM[3], given byH(X) ≤ 1

2 log
(
(2πe)N |Σ|

)
where

Σ is calculated as:

Σ =
∑
i

wi

(
Qi + (µi − µ̄)(µi − µ̄)T

)
(8)

and µ̄ is the weighted mean of the Gaussian components,
defined as µ̄ =

∑
i wiµi. It is worth mentioning that the

baseline method [7, 8] use the weighted average of position-
based color variance to approximate the rays-based ob-
servation variance by employing a single Gaussian whose
mean and variance are the weighted averages of the means
and variances of all samples along the rays, respectively
; in other words, Σ =

∑
i wiQi. This approach resem-

bles the first term in Eq. 8 but misses the covariance term

(µi − µ̄)(µi − µ̄)T . Additionally, it does not take into ac-
count the visibility to the training views.

In summary, we derive an upper bound for the pixel-
wise entropy, and consequently, for the joint entropy of each
view, this upper bound is utilized to closely approximate
the information gain at a given pose. In the planning phase,
given a candidate pose, we first apply Appendix Eq. 7 to
compute the entropy for each ray, subsequently, we compute
the joint entropy of the image observation as per Eq. 13
at that pose, which then serves as a reward function in the
planning process.

A.3. Active mapping implementation details

Active Mapping Pipeline. To train NVF within an active
mapping framework, we build our pipeline on top of nerf-
studio [10] and NerfBridge [12]. Every time a new view
is added to NVF, the model is trained from scratch on the
collection of its observed views.

After training, we sample candidate poses in the scene,
without collision with the object, by filtering all poses within
a density threshold. In the Room scene, the sampler addi-
tionally thresholds for collisions between view poses and
the current pose, to make sure the agent could move to the
new pose without collision. After candidate view poses are
generated, NVF computes the entropy of each pose. The
view with the highest entropy is next rendered in the scene
and added to the observations. This procedure repeats until



Figure 2. Schematics of the proposed Bayesian Network: Z represents the observed (ray-based) color, C represents the emitted (position-
based) color, D represents if the interval is occluded, V represents the visibility,

.

the horizon step is met, as is shown in Alg. 2. In the exper-
iments, we sample N = 512 candidate views and run the
active mapping for 20 steps; the evaluations are performed
after the last planning step.

Gradient-based Optimization for Planning. In addition
to the method of finding the best view among a randomly
sampled candidate poses set, we also performed experiments
on 6 DoF pose-refinement on the camera poses, p ∈ SE(3),
as the entropy function H is a fully differentiable differen-
tiable function of p. We find the optimal p such that

p∗ = argmax
p∈SE(3)

H(Zp) (9)

We first find the top k poses with the highest entropy Pk and
perform gradient-based optimization to refine the poses. To
reduce the size of the computation graph and the memory
requirements, a subset of pixels Zi ⊂ Zp with an image is
used to estimate the expected entropy, instead of the full im-
age. We perform backpropogation on this estimated entropy
using an Adam optimizer with a learning rate of 1e− 4, to
find the optimum pose.

Algorithm 1 Active Mapping with NVF

1: Input:
2: P ← initial poses
3: Z ← initial images
4: for i = 1 to nhorizon do
5: FΘ ← trainNVF(P,Z) ▷ train NVF
6: Pc ← samplePoses(FΘ) ▷ sample candidate poses
7: pi ← argmax

p∈Pc

H(Zp|FΘ)

8: P ← {pi} ∪ P
9: Z ← takeImageAt({pi}) ∪Z ▷ update training set

10: return FΘ

Algorithm 2 Gradient-Based Optimization for Planning

1: Input:
2: P ← sampled poses
3: Pk ← getTopKPoses(P,H)
4: for i = 1 to niterations do
5: for p in Pk do
6: Zp ←sampleRays(p)
7: p← p+ η

∂(H(Zp|FΘ))
∂p

8: p̃ = argmax
p∈Pk

H(Zp|FΘ)

9: return p̃

B. Experiments Details
B.1. Uncertainty Estimation details

As for the entropy comparison experiments shown in Fig. 3
of the main paper, Appendix Fig. 3 provides an illustration
of the pose of the training views and evaluation views.

B.2. Mesh metrics implementation details

For computing Accuracy, Completion, and Completion Ra-
tio metrics, ground truth points are sampled from the ground
truth scene meshes. Points from NVF’s reconstructed mesh
are sampled from the observation view rays. Accuracy mea-
sures the mean distance of sampled points from the recon-
structed mesh to the nearest corresponding points in the
ground truth mesh. Completion instead measures the mean
distance of sampled ground truth points to the nearest re-
constructed mesh points. Completion Ratio calculates the
percentage of completion distances being below a threshold.
For the original NeRF assets and Hubble scene, the threshold
is set to 0.01. For the Room scene, as the scale is larger, the
threshold is set to 0.1.

Visual coverage quantifies the surface area a trajectory
of views covers a scene. We compute this with rasterization.
Given a ground truth mesh of the scene, we project the mesh



Figure 3. Uncertainty Experiment Scene Setups: Illustration of the training views and evaluation views in Fig. 3. The black frustums
correspond to the training views, the green frustums are the evaluation views. For more video results, please refer to https://sites.
google.com/view/nvf-cvpr24/

.

onto all of the observation views. In each rendered image,
we record the number of mesh faces visible to the corre-
sponding view. We append all observed faces to a visible set.
Computing visual coverage is then the ratio of the length of
the visible set to the total number of faces in the mesh.

C. More Qualitative Results

C.1. Active Mapping

In addition to the results in Tab. 1, more qualitative results
are presented in Appendix Fig. 4. As shown, our method
achieves better novel view synthesis quality compared to

baseline methods.

C.2. Gradient-based Pose-Optimization results

Certain methods compare uncertainty among a finite set
of pre-defined scene-specific view candidates. This limits
their applicability to previously unseen scenes as well as
their ability to reach an optimal solution. Gradient-based
pose estimation aims to find the next-best-view (NBV) on
a continuous manifold which broadens its applicability to
different scenarios and results in optimal view selection.

The results in Tab. 1 highlight our approach’s ability to
select the optimal view from proposed candidates, intention-

https://sites.google.com/view/nvf-cvpr24/
https://sites.google.com/view/nvf-cvpr24/


Figure 4. Qualitative Results: Comparisons on novel view synthesis results. Our method demonstrates superior novel-view synthesis
rendering fine details in comparison to all baselines. For more video results, please refer to https://sites.google.com/view/nvf-
cvpr24/

https://sites.google.com/view/nvf-cvpr24/
https://sites.google.com/view/nvf-cvpr24/


Figure 5. Additional reconstruction results and camera view distribution For more video results, please refer to https://sites.
google.com/view/nvf-cvpr24/

.

https://sites.google.com/view/nvf-cvpr24/
https://sites.google.com/view/nvf-cvpr24/


Table 1. Performance of gradient-based methods

Method PSNR↑ SSIM↑ LPIPS↓ RGB↓ Acc.↓ Comp.↓ C.R.↑ Vis.↑
AIR 24.63 0.862 0.182 0.0035 0.0249 0.0140 0.525 0.586

NeurAR 25.19 0.772 0.265 0.0030 0.0480 0.0170 0.416 0.537
NVF 27.99 0.919 0.100 0.0016 0.0225 0.0110 0.651 0.681

AIR-OPT 24.41 0.858 0.183 0.0037 0.0267 0.0159 0.450 0.548
NeurAR-OPT 25.42 0.794 0.245 0.0029 0.0461 0.0180 0.381 0.563

NVF-OPT 29.33 0.930 0.086 0.0012 0.0196 0.0106 0.666 0.690

Table 2. Ablation Studies

Ablations PSNR↑ SSIM↑ LPIPS↓ RGB↓ Acc.↓ Comp.↓ C.R.↑ Vis.↑
w/o Vis. 21.11 0.844 0.187 0.0119 0.0466 0.0765 0.479 0.382
w/o Var. 23.77 0.897 0.113 0.0049 0.0276 0.0305 0.639 0.551
Ind. Rays 20.32 0.822 0.236 0.0125 0.0560 0.0506 0.451 0.482

Loose 22.54 0.881 0.137 0.0100 0.0247 0.0609 0.600 0.504
NVF (Ours) 24.42 0.902 0.108 0.0041 0.0287 0.0324 0.628 0.546

ally omitting gradient-based optimization to ensure a fair
comparison. To extend our analysis, we conducted a further
comparison with gradient-based optimization methods for
view selection, detailed in Tab. 1. This comparison, which
includes our method and two others [8, 11], utilizes gradient
descent to refine the selection of views. As demonstrated
in Appendix Tab. 1, the integration of gradient-based opti-
mization considerably improves our method’s performance,
allowing it to surpass competing gradient-based approaches.
This superior performance is attributed to our method’s more
precise estimation of uncertainty.

C.3. Additional Results

We present the complete results of all original NeRF assets
in Appendix Tab. 3 & 4. We present the complete results of
the ablation study in Appendix Tab. 2
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Table 3. Results of original NeRF assets (1)

Scene Method PSNR↑ SSIM↑ LPIPS↓ RGB↓ Acc.↓ Comp.↓ C.R.↑ Vis.↑

Chair

Random 17.17 0.835 0.190 0.0193 0.0470 0.0470 0.250 0.311
WD 18.07 0.853 0.197 0.0163 0.0386 0.0167 0.499 0.582

ActiveRMAP 18.67 0.863 0.183 0.0136 0.0277 0.0144 0.584 0.614
AIR 18.47 0.859 0.176 0.0155 0.0296 0.0135 0.568 0.614

ActiveNeRF 15.90 0.806 0.257 0.0280 0.0295 0.0223 0.407 0.503
NeurAR 19.24 0.817 0.231 0.0127 0.0427 0.0155 0.485 0.596

NVF (Ours) 23.89 0.937 0.057 0.0041 0.0209 0.0089 0.763 0.705

Drums

Random 17.08 0.753 0.286 0.0198 0.0378 0.0162 0.518 0.193
WD 19.07 0.796 0.252 0.0126 0.0288 0.0130 0.575 0.444

ActiveRMAP 18.77 0.784 0.264 0.0134 0.0385 0.0128 0.574 0.443
AIR 19.00 0.789 0.277 0.0126 0.0319 0.0115 0.596 0.464

ActiveNeRF 18.35 0.767 0.305 0.0147 0.0325 0.0160 0.479 0.393
NeurAR 18.22 0.722 0.328 0.0151 0.0434 0.0158 0.453 0.401

NVF (Ours) 21.00 0.866 0.142 0.0079 0.0186 0.0069 0.836 0.541

Ficus

Random 19.86 0.826 0.202 0.0103 0.0254 0.0141 0.671 0.355
WD 17.98 0.777 0.316 0.0163 0.0299 0.0172 0.553 0.601

ActiveRMAP 19.40 0.803 0.263 0.0122 0.0260 0.0122 0.653 0.637
AIR 18.75 0.772 0.325 0.0134 0.0237 0.0145 0.575 0.554

ActiveNeRF 18.75 0.762 0.366 0.0134 0.0210 0.0202 0.560 0.529
NeurAR 20.27 0.755 0.337 0.0094 0.0254 0.0189 0.545 0.513

NVF (Ours) 22.76 0.900 0.089 0.0053 0.0112 0.0062 0.896 0.649

Hotdog

Random 19.87 0.861 0.166 0.0107 0.0379 0.0565 0.239 0.361
WD 21.84 0.892 0.131 0.0066 0.0186 0.0395 0.344 0.455

ActiveRMAP 22.75 0.895 0.130 0.0053 0.0197 0.0415 0.338 0.466
AIR 22.35 0.897 0.124 0.0058 0.0197 0.0381 0.351 0.470

ActiveNeRF 21.57 0.885 0.145 0.0070 0.0234 0.0335 0.324 0.461
NeurAR 22.90 0.866 0.171 0.0051 0.0279 0.0320 0.317 0.450

NVF (Ours) 26.10 0.928 0.084 0.0025 0.0157 0.0356 0.371 0.472



Table 4. Results of original NeRF assets (2)

Scene Method PSNR↑ SSIM↑ LPIPS↓ RGB↓ Acc.↓ Comp.↓ C.R.↑ Vis.↑

Lego

Random 16.49 0.720 0.265 0.0229 0.0599 0.0504 0.161 0.115
WD 18.54 0.771 0.217 0.0142 0.0305 0.0283 0.257 0.224

ActiveRMAP 17.49 0.752 0.234 0.0180 0.0238 0.0237 0.280 0.227
AIR 19.33 0.797 0.189 0.0118 0.0262 0.0249 0.296 0.230

ActiveNeRF 17.59 0.736 0.263 0.0176 0.0265 0.0317 0.222 0.199
NeurAR 15.12 0.713 0.277 0.0314 0.0246 0.0357 0.319 0.189

NVF (Ours) 23.97 0.896 0.082 0.0040 0.0131 0.0167 0.426 0.270

Materials

Random 15.90 0.802 0.220 0.0266 0.0409 0.0800 0.117 0.089
WD 19.38 0.845 0.174 0.0122 0.0197 0.0275 0.343 0.304

ActiveRMAP 19.68 0.843 0.174 0.0117 0.0213 0.0271 0.345 0.303
AIR 19.45 0.844 0.171 0.0138 0.0238 0.0320 0.318 0.289

ActiveNeRF 18.73 0.833 0.191 0.0135 0.0207 0.0290 0.322 0.287
NeurAR 19.68 0.833 0.182 0.0109 0.0196 0.0339 0.348 0.255

NVF (Ours) 25.36 0.931 0.061 0.0029 0.0107 0.0134 0.564 0.396

Mic

Random 21.18 0.851 0.205 0.0081 0.0294 0.0276 0.468 0.257
WD 26.79 0.942 0.067 0.0022 0.0176 0.0087 0.755 0.564

ActiveRMAP 26.60 0.940 0.069 0.0022 0.0187 0.0095 0.752 0.532
AIR 24.81 0.927 0.107 0.0034 0.0165 0.0091 0.728 0.508

ActiveNeRF 24.96 0.926 0.101 0.0033 0.0198 0.0105 0.709 0.497
NeurAR 25.15 0.889 0.159 0.0031 0.0304 0.0099 0.679 0.528

NVF (Ours) 27.99 0.956 0.053 0.0016 0.0161 0.0070 0.854 0.566

Ship

Random 15.75 0.578 0.483 0.0281 0.0580 0.0456 0.250 0.252
WD 19.54 0.663 0.369 0.0112 0.0525 0.0313 0.374 0.540

ActiveRMAP 19.61 0.665 0.343 0.0112 0.0487 0.0290 0.385 0.543
AIR 19.22 0.658 0.367 0.0121 0.0515 0.0307 0.378 0.513

ActiveNeRF 17.19 0.569 0.485 0.0197 0.0606 0.0370 0.329 0.496
NeurAR 19.38 0.556 0.491 0.0115 0.0569 0.0461 0.331 0.483

NVF (Ours) 22.32 0.742 0.254 0.0059 0.0445 0.0188 0.454 0.596
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