
Uncertainty Visualization via Low-Dimensional Posterior Projections
Supplementary material

Omer Yair, Elias Nehme & Tomer Michaeli
Technion - Israel Institute of Technology

Haifa, Israel
omeryair@gmail.com, seliasne@gmail.com, tomer.m@ee.technion.ac.il

A. Toy model
A.1. Problem setting

In the main text, we demonstrated PPDE on a 2D denois-
ing task, where samples xi from a Gaussian mixture model
were distorted by additive white Gaussian noise ni with a
standard deviation of σn to result in noisy measurements yi.
The prior distribution px(x) was comprised of L Gaussians
defined by the parameters {µℓ,Σℓ, πℓ}Lℓ=1, namely,

px(x) =

L∑
ℓ=1

πℓ · φ(x;µℓ,Σℓ), (S1)

where φ(x;µ,Σ) is the PDF of a multivariate normal distri-
bution with mean µ and covariance matrix Σ. Specifically,
in the 2D example of Fig. 5 from the main text, we used
L = 6 Gaussians with the following parameters:

µ1 = (−1, 1)T Σ1 =

(
0.05 −0.01
−0.01 0.025

)
π1 = 0.15

µ2 = (1, 1)T Σ2 =

(
0.05 0.01
0.01 0.025

)
π2 = 0.15

µ3 = (0, 0)T Σ3 =

(
0.02 0
0 0.03

)
π3 = 0.15

µ4 = (−0.7,−1)T Σ4 =

(
0.15 −0.04
−0.04 0.04

)
π4 = 0.15

µ5 = (0,−1.2)T Σ5 =

(
0.15 0
0 0.025

)
π5 = 0.15

µ6 = (0.7,−1)T Σ6 =

(
0.15 0.04
0.04 0.04

)
π6 = 0.15.

(S2)
The standard deviation of the additive noise was σn = 0.4.

A.2. Analytical posterior distribution

Assuming the setting in Sec. A.1, here we derive the ana-
lytical posterior distribution. Specifically, we show that the
posterior is also a GMM, and that it has the form

px|y(x|y) =
L∑

ℓ=1

π̃ℓ(y) · φ(x; µ̃ℓ(y), Σ̃ℓ(y)), (S3)

where

µ̃ℓ (y) = µℓ +Σℓ(Σℓ + σ2
nI)

−1 (y − µℓ) ,

Σ̃ℓ(y) = Σℓ −Σℓ(Σℓ + σ2
nI)

−1Σℓ,

π̃ℓ(y) =
πℓφ(y;µℓ,Σℓ + σ2

nI)∑L
ℓ′=1 πℓ′φ(y;µℓ′ ,Σℓ′ + σ2

nI)
. (S4)

To derive this result, we start by invoking the law of to-
tal probability, marginalizing over an auxiliary random vari-
able c that selects one of the L distributions with probabili-
ties {π1, . . . , πL},

px(x) =

L∑
ℓ=1

px|c(x|ℓ)pc(ℓ). (S5)

The posterior distribution can then be written as

px|y(x|y) =
L∑

ℓ=1

px|y,c(x|y, ℓ)pc|y(ℓ|y). (S6)

The term pc|y(ℓ|y) in Eq. (S6) can be written using Bayes’
rule as

π̃ℓ(y) ≜ pc|y(ℓ|y)

=
py|c(y|ℓ)pc(ℓ)

py(y)

=
py|c(y|ℓ)pc(ℓ)∑L

ℓ′=1 py|c(y|ℓ′)pc(ℓ′)

=
πℓφ(y;µℓ,Σℓ + σ2

nI)∑L
ℓ′=1 πℓ′φ(y;µℓ′ ,Σℓ′ + σ2

nI)
. (S7)

Moreover, to explicitly express px|y,c(x|y, ℓ) in Eq. (S6),
we note that x and y are jointly Gaussian given c, because
under a particular choice c = ℓ, the random vector y is the
sum of two independent Gaussian vectors, x and n. Hence,
conditioned on the event c = ℓ, the joint distribution of x
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and y is given by

px,y|c(x,y|ℓ) = N
((

µℓ

µℓ

)
,

(
Σxx|c(ℓ) Σxy|c(ℓ)
Σxy|c(ℓ) Σyy|c(ℓ)

))
= N

((
µℓ

µℓ

)
,

(
Σℓ Σℓ

Σℓ Σℓ + σ2
nI

))
. (S8)

From the joint distribution in Eq. (S8), the conditional dis-
tribution of x given y and c is derived as

px|y,c(x|y, ℓ) = φ(x; µ̃ℓ(y), Σ̃ℓ(y)), (S9)

with µ̃ℓ(y) and Σ̃ℓ(y) defined as in Eq. (S4).

A.3. Projected posterior distribution

Given that the posterior distribution is a GMM as in
Eq. (S3), it is straightforward to derive the projected poste-
rior distribution (PPD) over any arbitrary 1D subspace de-
fined by a center x0 and a normalized direction w. This is
done by projecting each of the Gaussians individually, i.e.,
the PPD for v = wT (x− x0) is given by

pv|y(v|y) =
L∑

ℓ=1

π̃ℓ(y)·φ(v;wT (µ̃ℓ(y)−x0),w
T Σ̃ℓ(y)w).

(S10)
During both training and testing, we took x0 to be the

posterior mean for a given y,

x0(y) =

L∑
ℓ=1

µ̃ℓ(y), (S11)

and w to be a random normalized direction.

B. PPD learning with an EBM
For the purpose of training the conditional EBM, we used
a variant of contrastive divergence (CD), proposed in [18].
This method attempts to model the log distribution of the
dataset by employing a series of distributions that gradually
transition between the distribution of the dataset to some
reference Gaussian distribution with known parameters. We
refer to this method here as multilevel CD (MCD) and re-
view it only briefly for completeness. For a more detailed
description please refer to [18].

At the core of MCD lies a series of distributions defined
by (i) coefficients {αt}Tt=1 gradually decreasing from α1 =
1 to αT = 0, (ii) a discrete random variable t ∈ {1, . . . , T},
with some chosen prior distribution pt, and (iii) a reference
Gaussian vector n. During training, a new random variable
x̃ is defined as a linear mixture of x and n with random lin-
ear coefficients associated with αt (note that t is a random
variable),

x̃ = αtx+
√

1− α2
t n. (S12)

The surrogate objective of MCD is to model the mixed dis-
tribution of the pair (x̃, t). This is done using a neural net-
work f(x̃;θ) with parameters θ, which receives x̃ as input,
and outputs T scalars, where the t-th output of the network
models the log-probability

ft(x̃;θ) ≈ log px̃,t(x̃, t) = log px̃|t(x̃|t) + log pt(t).
(S13)

The distribution of x can then be extracted from the model
at t = 1 as

f1(x;θ) ≈ log px(x) + log pt(1). (S14)

The motivation for modeling the pair (x̃, t), as opposed
to just modeling x, is to improve the accuracy of CD in
modeling low-density regions of log px(x). During train-
ing, the model is only exposed to samples x coming from
regions of high probability. Therefore, without further mod-
ifications, it usually fails to extrapolate the density function
beyond these regions correctly. Training on pairs (x̃, t) gen-
erated by sampling n and t from their known distribution
and x from the dataset, MCD can better overcome this chal-
lenge.

The update step of MCD combines the standard CD up-
date at any fixed t with a classification update for t given
x̃. The CD update at a fixed t is derived by applying the
classical CD algorithm to the t-th output of the network,
which models log px̃|t (up to the known term log pt(t)). At
each training step, the modeled log px̃|t is used to produce
an MCMC process starting at x̃ and ending at a contrastive
sample x̃neg. The used MCMC process was Langevin dy-
namics [17] with a Metropolis-Hastings rejection step sim-
ilar to [2, 11]. The parameters of the model were then up-
dated according to the CD algorithm, following the negative
gradient of ft(x̃neg;θ)− ft(x̃;θ).

As for the classification update, it was derived by view-
ing the network as a classifier, minimizing the cross-entropy
loss. This holds since a Softmax operation on the network
outputs results in the estimation of the conditional distribu-
tion pt|x̃

Softmax(f(x̃;θ))t ≈
px̃,t(x̃, t)∑T

t′=1 px̃,t(x̃, t
′)

= pt|x̃(t|x̃).

(S15)
The combined update rule of MCD was therefore given

by

θ(k+1) = θ(k) − η∇θ [ft(x̃neg;θ)− ft(x̃;θ)

+Softmax(f(x̃;θ))t] ,
(S16)

where η is the algorithm’s learning rate.
Note that thus far the derivation of MCD assumed an un-

conditional setting where our goal was to model log px(x).



To adopt this training scheme for modeling the PPD, we
need to replace x with its projection v = W T (x−x0) and
make the EBM depend on the distorted sample y and the se-
lected subspace A(y) = {x0(y),W (y)}. As described in
Sec. 3.3 of the main text, this dependency is achieved using
a separate feature extractor which outputs a feature vector
h conditioning the layers of the EBM through feature nor-
malization.

C. Datasets and restoration tasks

We evaluated our method on a range of datasets and tasks
spanning common scenarios in low-level vision. Specifi-
cally, we used the MNIST dataset [1] (28×28), the CelebA
dataset [9] (cropped and resized to 160 × 160 as in SR-
Flow [10]), the CelebA-HQ dataset [6] (256×256), the Ima-
geNet 1K dataset [14] (128×128) and an a cells microscopy
dataset presented in [15]. The tasks we experimented with
were:

• MNIST inpainting. Recovering digit images from only
the bottom 8 rows.

• MNIST denoising. Denoising digit images contaminated
with additive white Gaussian noise with σn = 1 and clip-
ping.

• CelebA-HQ inpainting. Recovering a rectangular area
of size 70 × 175 around the eyes in CelebA-HQ images
of size 256× 256.

• CelebA-HQ colorization. Recovering RGB images from
grayscale images obtained by averaging color channels.

• CelebA super-resolution. 8× super-resolution of face
images downsampled with a bicubic kernel to 20 × 20
pixels as described in [10].

• ImageNet colorization. Recovering RGB images from
grayscale images obtained by averaging color channels.

• Biological image-to-image. Transforming a given mi-
croscopic biological imaged specimen with one fluores-
cent dye appears as if it was imaged by another. We have
broken this task into transforming patches of size 64× 64
between the 2 domains.

D. Architectures and training hyperparame-
ters

The estimation of the projected posterior distribution (PPD)
requires the selection of a subspace for each distorted im-
age on which the posterior is to be projected. As described
in Sec. 3.2 of the main text, we selected in this work to use
a subspace that contains the minimum MSE (MMSE) esti-
mator and is spanned by the first two principal components
(PCs) of the posterior. For the purpose of predicting these
values we trained two auxiliary networks. Overall, we have
sequentially trained three networks for each of the evaluated
tasks.

The first network was trained using an MSE loss to out-
put the MMSE estimate for a given distorted image y. The
second network was trained using NPPC [12] to predict the
first five principal components of the posterior given both
the distorted image and the MMSE estimate (predicted by
the first network). The third network was trained using the
method described in this paper to model the PPD.

Each network required a different architecture depend-
ing on the task at hand. Overall, for every task, we used a
specific subset of the following architectures:
• U-Net-S. A small version of the original U-Net archi-

tecture from [13] with three encoder and decoder levels
containing a single convolution layer each. The number
of channels in each level is 32, 64 and 128, respectively.
The bottleneck has two convolutions of 256 channels. In
addition, we used a group-norm layer after each convolu-
tion, LeakyReLU as a non-linearity layer, and a nearest-
neighbor interpolation for upsampling.

• U-Net-L. A U-Net architecture similar to the one used in
DDPM [4] for the CelebA generative task, but with half
the number of channels. We also removed all network
parts related to the time index dependency.

• U-Net-M. A network similar to U-net-L with one level
less in the encoder and decoder (the top level, in terms of
the number of channels).

• EDSR. An architecture similar to the EDSR architecture
described in [8] using 16 residual blocks and a width of
64 channels.

• cEBM-S. This network is comprised of two parts, as de-
scribed in Sec. 3.3 in the main text. The first part is a
feature extractor based on a ResNet18 architecture [3],
fitted for smaller images. We removed the stride in the
input convolution and the following pooling layer and re-
duced the number of channels by 2×. In addition, we
replaced the BatchNorm layers with GroupNorm layers
and performed the downsampling using average pooling
layers (instead of stride convolutions). The output of this
network is a feature vector of length 256. The second
part of the network is a conditional MLP with 6 hidden
layers of width 128. We used SiLU as the non-linearity
followed by an AdaIN [5] layer that performs adaptive
scaling and shifting. The scaling and shifting parameters
are extracted from the feature vector using a linear layer.

• cEBM-L. This network is similar to the cEBM-S except
that the architecture of the feature extractor is replaced by
the encoder part of the U-Net-L, using a global average
pooling layer at the end of the bottleneck to produce a
feature vector of length 512.
In general, the U-Net architectures were used for the

MMSE estimator and the PCs, and the conditional EBMs
was used for modeling the PPD. The only exceptions were
the networks in the super-resolution task, in which the dis-
torted image was smaller than all other images and there-



fore was fed into the EDSR architecture either to directly
produce the desired output (as in the case of the MMSE)
or as a preprocessing step before concatenating it with the
other inputs.

All networks were trained using the Adam optimizer,
stopping the training process once it reached a minimal
value of the objective over a dedicated validation set. For
the training of the PC predictor and the PPD model, the
learning rate was kept fixed. On the other hand, for training
the MMSE estimator, the learning rate was reduced by half
every 5000 steps. Table S1 summarizes the architectures
and training hyperparameters used for the networks in each
task/dataset.

E. Additional Results
E.1. PPDs

Figures S1-S7 provide more examples of PPDs captured by
PPDE for the datasets and tasks presented in the main text.

E.2. Comparisons to NPPC and KDE

Figures S8-S13 provide further negative log-likelihood
comparisons of PPDE with the respective baselines.



Table S1. Architectures, learning rates, and number of steps used per task/dataset.

MMSE MMSE MMSE PCs PCs PCs PPD PPD PPD
Task Arch. LR # of steps Arch. LR # of steps Arch. LR # of steps

MNIST
Inpainting U-Net-S 10−4 3,510 U-Net-S 10−4 5,000 cEBM-S 10−4 36,504
Denoising U-Net-S 10−3 57,330 U-Net-S 10−4 408,000 cEBM-S 10−3 1,026,558

CelebA
Inpainting Eyes U-Net-L 10−4 7,555 U-Net-L 10−5 22,500 cEBM-L 10−4 94,000
Colorization U-Net-L 3 · 10−5 9,066 U-Net-L 3 · 10−5 38,500 cEBM-L 10−4 44,500

Super-resolution EDSR 10−4 287,651
EDSR

+ U-Net-L 10−5 113,500
EDSR

+ cEBM-L 10−4 203,250

ImageNet
Colorization U-Net-M 3 · 10−4 187,200 U-Net-M 10−5 37,600 cEBM-L 10−4 102,500

Biological
Image-to-image Pretrained U-Net-M 10−4 81,100 cEBM-L 10−4 402,800
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Figure S1. More examples of MNIST inpainting PPDs.
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Figure S2. More examples of MNIST denoising.
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Figure S3. More examples of CelebA-HQ colorization.
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Figure S4. More examples of CelebA-HQ inpainting.
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Figure S5. More examples of CelebA 8× super-resolution.
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Figure S6. More examples of ImageNet colorizaion.
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Figure S9. More comparisons of MNIST denoising. The posterior samples on the right were obtained using an EBM trained on MNIST.
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Figure S10. More comparisons of CelebA-HQ inpainting. The posterior samples on the right were obtained using DPS [7].
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Figure S11. More comparisons of CelebA-HQ colorization. The posterior samples on the right were obtained using DDNM [16].
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