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Figure 1. Static Codes Sampling.

A. Video Modeling Details

Static Codes. In our implementation, for simplicity, we
determine the static codes length ls by directly specifying
it, bypassing the formula that contains the sampling rate rs.
Typically the value of ls is the sum of a factor of the video
length T, denoted as Tf , and 1 (i.e. ls = Tf + 1), where
the additional 1 refers to the last static code placed on the
final frame of the video. This ensures that a fixed interval
zs between most static codes (i.e. zs = T/ls), excluding the
last two.

Specifically, as shown in Fig. 1, given T = 12, we
choose the Tf as 3, thus the length of the static codes ls
is computed as ls = Tf + 1 = 4. The intervals of the first
three static codes is set to T/ls = 3, while the interval of
the last two static codes is 2.
Dynamic Codes. Similar to the static codes, we also di-
rectly specify the value of ld to determine the length of the
dynamic codes, thus bypassing the calculation containing
the sampling rate rd. Since we do not employ the sampling
method of weighted sum used in static code sampling but
use interpolation when sampling dynamic code correspond-
ing to frame index t, so the dynamic codes length ld has
greater flexibility and can be set freely. Typically, we set
the ld to be approximately half of the video length T . This
approach not only avoids the storage overhead of saving a
dynamic code for each frame but also ensures sufficient dy-
namic information for subsequent interpolation operations.

B. Additional Setup

B.1. Datasets

We conduct experiments using 7 videos from UVG: Beauty,
Bosphorus, HoneyBee, Jockey, ReadySetGo, ShakeNDry,
and YachtRide. Except for ShakeNDry, which consists of
300 frames, the remaining videos contain 600 frames each.
The resolution of all the videos is 960 × 1920. We also
select 10 videos in DAVIS to conduct experiments. The
chosen videos include Blackswan, Bmx-trees, Boat, Break-
dance, Camel, Car-roundabout, Car-shadow, Cows, Dance,

and Dog. These videos have a relatively small number
of frames, presenting significant challenges for our exper-
iments.

B.2. Implementation.

For NeRV and HNeRV, we conduct experiments using
their open-source implementations. As for DNeRV, we
develop our implementation based on the open-source E-
NeRV code. When comparing the model sizes between DS-
NeRV and other implicit methods, the total size of HNeRV
comprises the sum of its embedding and decoder, whereas
in the case of DNeRV, the total size is calculated by sum-
ming the diff embedding, content embedding, and the de-
coder. As for DS-NeRV, the total size includes the sum of
the static and dynamic codes as well as the fusion decoder.

In our typical implementation, for a 960×1920×3 video
frame, we configure the dimensions of each static code as
4× 8× 64. The dimensions of each dynamic code is set to
20 × 40 × 2. The lengths of the static and dynamic codes,
while depending on the extent of changes in video dynam-
ics, are significantly shorter than the original video length.
In a few videos with strong dynamic changes, such as Ready
and Jockey, we fine-tune the dynamic codes dimensions to
accommodate high dynamics.

We provide more architecture details for our video re-
construction approach on Bunny and UVG in Tab. 1. ls ×
hs × ws × dims and ld × hd × wd × dimd represent the
dimensions of the static and dynamic codes, respectively.
c1 is the number of channels of the fused code. Chmin is
the lowest channel width in the NeRV blocks. We adopt the
settings from [1] to set the stride list, kernel size and the
channel reduction rate in NeRV blocks. To match the spa-
tial dimensions of the static codes with those of the dynamic
codes, the first NeRV block performs upsampling with a up-
scale factor of 5. The Convq , Convk, Convv in CCA are
all set to 2D convolution with a step size of 1, kernel size of
1, and with the number of input and output channels both
set to c1.

C. Additional Ablation Results

C.1. Fusion Mechanism

We explore different fusion mechanisms for integrating
static and dynamic codes on UVG, which can be catego-
rized into three main approaches: a) Summation. b) Spa-
tial attention. c) Channel attention. As indicated in Tab. 2,
a simple summation of static and dynamic codes leads to



Video size resolution ls × hs × ws × dims ld × hd × wd × dimd c1 Chmin strides
Bunny 0.35 640× 1280 13×4× 8× 64 66×20× 40× 1 36 16 (5,2,2,2,2,2)
Bunny 0.75 640× 1280 13×4× 8× 64 66×20× 40× 1 48 28 (5,4,2,2,2)
Bunny 1.5 640× 1280 13×4× 8× 64 66×20× 40× 2 70 38 (5,4,2,2,2)
Bunny 3 640× 1280 13×4× 8× 64 66×20× 40× 4 92 70 (5,4,2,2,2)
Beauty 3 960× 1920 61×4× 8× 64 300×× 20× 40× 2 80 56 (5,4,3,2,2)
Bosph 3 960× 1920 61×4× 8× 64 300×20× 40× 2 80 56 (5,4,3,2,2)
Honey 3 960× 1920 61×4× 8× 64 300×20× 40× 2 80 56 (5,4,3,2,2)
Yacht 3 960× 1920 61×4× 8× 64 300×20× 40× 2 80 56 (5,4,3,2,2)
Ready 3 960× 1920 31×4× 8× 64 300×20× 40× 4 76 44 (5,4,3,2,2)
Jockey 3 960× 1920 31×4× 8× 64 400×20× 40× 4 70 38 (5,4,3,2,2)
Shake 3 960× 1920 101×4× 8× 64 150×20× 40× 2 82 58 (5,4,3,2,2)

Table 1. Architecture details of DS-NeRV on various tasks.

Beauty Bosph Honey Jockey Ready Shake Yacht
Sum 33.89 34.95 39.39 32.77 26.97 34.88 29.29
S-A 33.80 34.75 39.45 31.42 25.69 35.00 28.85
Ours 33.97 35.22 39.56 32.86 27.10 35.04 29.4

Table 2. Ablation study for fusion mechanisms.

poor performance, and performing cross-spatial attention
even perform worse. Cross-channel attention helps iden-
tify the most relevant channels when fusing static code and
dynamic code, thereby improving the performance.

C.2. Spatial Dimension of the Dynamic Code

We maintain a constant overall model size of 3M while test-
ing the impact of varying the dimensions of dynamic codes
on the results. The results, as shown in the Tab. 3, indicate
that when the spatial dimension of dynamic codes is small,
it becomes challenging to recover high-frequency motion
information from low spatial resolution codes. Our exper-
iments suggest that setting the dynamic codes spatial size
hd × wd to 20× 40 can achieve the best results.

Dynamic codes dimension PSNR MS-SSIM
4× 8× 32 37.96 0.9877
4× 8× 64 37.69 0.9869
20× 40× 2 38.55 0.9895
20× 40× 4 38.65 0.9897

Table 3. Ablation study for the dimension of dynamic codes.

D. Additional Quantitative Results

D.1. Video Reconstruction

BeautyBosphHoneyJockeyReadyShakeYacht
NeRV 32.79 31.98 37.91 30.04 23.48 32.89 26.26

DNeRV 31.62 30.18 33.53 29.62 22.68 32.45 25.75
HNeRV 31.37 31.37 38.2 31.35 24.54 33.29 27.64

Ours 33.29 34.31 38.98 32.64 26.41 34.04 28.72

Table 4. Video Reconstruction on UVG with 1080p

In prior works, such as HNeRV, the resolution is adjusted
to 960 × 1920 to maintain a 1:2 aspect ratio, ensuring a
small initial image embeddings ( 2 × 4 spatial size) to im-
prove model performance. We also conduct experiments on
the standard UVG with 1080p, as shown in the Tab. 4. Our
method still achieves best performance, while others suffer
performance degradation due to large initial image embed-
dings caused by inappropriate scaling.

D.2. Video Decoding

Methods H.264 HEVC NeRV Ours
FPS 15 14 60.08 63.54

Table 5. Decoding FPS results

In real-world applications, inference time is a critical
metric. A video is typically encoded once and requires de-
coding numerous times, akin to a movie that is encoded only
once but viewed millions of times. Consequently, decoding
time holds significance as a performance metric. Our DS-
NeRV has the advantages of faster decoding speed and does
not require to do frame decoding in a sequential manner like
H.264 and HEVC, as shown in Tab. 5.

D.3. Video Inpainting

Method PSNR(↑) MS-SSIM(↑) LPIPS(↓) FPS(↑)
IIVI 27.66 0.9574 0.044 3.53
Ours 26.45 0.9515 0.037 63.54

Table 6. Additional video inpainting results.

We also conduct comparative experiments on video in-
painting with SOTA inpainting method IIVI [2]. As shown
in in Tab. 6, even without the specific design and compli-
cated pipeline, we achieve competitive performance to con-
temporary SOTA inpainting methods, while achieving the
fastest inference speed. IIVI requires 20 times the inpaint-
ing time we need.

E. Additional Qualitative Results
E.1. Visualization of video reconstruction.

We present an additional qualitative comparison of video re-
construction on UVG in Fig. 2. DS-NeRV preserves more
high frequency details compared to other methods, such as
the gloss on the lips in Beauty, the distant trees on the moun-
tains in Bosphorus, the horseshoes in Jockey, and the build-
ings in Ready. Qualitative comparisons of video reconstruc-
tion in DAVIS are also shown in Fig. 3. DS-NeRV excels in
reconstructing the feathers of the swan and the grassy bank
in Blackswan. In Breakdance, DS-NeRV exhibits fewer ar-
tifacts in high dynamic areas, such as the dancer’s shoes.



DS-NeRV also provides improved reconstruction of back-
ground foliage in Camel and offers higher-quality recon-
struction of the audience and grass in Dance.

E.2. Visualization of video inpainting.

In video inpainting task, DS-NeRV is still capable of par-
tially inferring reasonable content in the masked regions,
achieving better results. Additionally, it outperforms other
methods in preserving high frequency details in the rest of
the image, as shown in the Fig. 4.

E.3. Visualization of video interpolation.

Qualitative results for video interpolation can be viewed in
Fig. 5, where all the video frames shown can not seen during
training. While HNeRV and DNeRV use the frames to be
interpolated itself as input to obtain embeddings during test-
ing, our method interpolates the static and dynamic codes,
obtaining the static and dynamic information of the interpo-
lated frames, and then proceeds with decoding. DS-NeRV
still achieves competitive results.

F. Limitations and Future Work
While DS-NeRV has achieved excellent performance, spec-
ifying the length of static and dynamic codes for each video
is still a manual process during training. This provides some
flexibility but limits the model’s ability for adaptive adjust-
ments. Finding the optimal static and dynamic code dimen-
sions for each video requires time for testing. In the fu-
ture, we may explore more automated and adaptive training
methods to assist the model in finding the optimal static and
dynamic code decomposition solutions.
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Figure 2. Additional reconstruction results on UVG.

Figure 3. Additional reconstruction results on DAVIS.



Figure 4. Additional inpainting results.

Figure 5. Additional interpolation results on UVG.
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