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MaskClustering: View Consensus based Mask Graph Clustering
for Open-Vocabulary 3D Instance Segmentation

Supplementary Material

1. Overview001

In this supplementary material, we begin by detailing the002
advantages of view consensus-based mask clustering in003
comparison to geometric overlap and semantic similarity004
in Sec. 2. Following that, in Sec. 3, we introduce addi-005
tional clustering baselines to demonstrate the superiority of006
our iterative clustering algorithm. To offer a more com-007
prehensive understanding of our approach, we delve into008
additional experimental details in Sec. 6 and elaborate on009
implementation details in Sec. 5. Further, in Sec. 4, we010
present additional qualitative results.011

2. Discussion about View Consensus Rate012

2.1. Comparison with Geometric Overlap013
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Figure 1. Failure cases exemplifying over-segmentation in the
geometric overlap-based method.

As stated in Section 3.2.1 of the main paper, we observe014
that the merging of masks relying on geometric overlap may015
lead to over-segmentation errors. As illustrated in Fig. 1,016
such errors are evident, including the over-segmentation of017
the side of an armchair in the first row and the corner of a018
desk in the second row. In this section, we provide com-019
prehensive statistics to explain why our proposed method is020
more effective in addressing these specific scenarios.021

2.1.1 Case Study: Armchair Over-segmentation022

Let’s consider the armchair instance in the first row as a case023
study. To streamline notation, we will use mi here to rep-024
resent each mask instead of the double index mt,i as used025
in the main paper. Examining Fig. 2, the blue mask m1026
captures the side of the armchair, while the red mask m2027
captures its frontal view. The geometric Intersection-over-028
Union (IoU) between them is merely 0.012, falling signif-029
icantly below the 0.25 threshold employed by OVIR-3D,030

rendering their merger challenging. Despite the inclusion 031
of the third-view green mask m3, merging the blue and 032
red masks remains challenging because their overlaps with 033
the third-view mask are still low (0.044 and 0.097, respec- 034
tively). 035
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Figure 2. Case study. Masks belonging to a same instance may
display low geometric overlap but exhibit a high view consensus
rate. The blue and red masks represent the side and frontal views,
respectively, of the same armchair. Despite their low geometric
overlap, both masks are visible in the rightmost frame and are con-
tained by the same green mask, resulting in a high consensus rate.

In contrast, our view consensus metric effectively uti- 036
lizes third-view observations. In Fig. 2, both masks are 037
visible in the rightmost view, and they are encompassed by 038
the green mask m3 (highlighted by arrows and circles of 039
matching colors). Consequently, this third view supports for 040
merging these two masks. In total, these masks co-occur in 041
42 frames, receiving unanimous support, resulting in a per- 042
fect 42/ 42 consensus rate. 043

Figure 3. Distribution of Intersection over Union (IoU) for pos-
itive mask pairs. 46.2% of mask pairs belonging to the same in-
stance exhibit low IoU, contributing to the over-segmentation phe-
nomenon observed in the geometric overlap-based method.

1



CVPR
#9907

CVPR
#9907

CVPR 2024 Submission #9907. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2.1.2 More Statistics044

We present additional statistics to illustrate why a geometric045
overlap-based method tends to result in over-segmentation046
of objects. Using the validation set of ScanNet, we iden-047
tify all positive mask pairs, meaning they correspond to the048
same object based on ground truth annotations. We then049
calculate the IoU for each pair and depict the distribution in050
Fig. 3. Notably, while 53.8% of pairs exhibit high geomet-051
ric overlap, 46.2% have significantly lower IoU. Moreover,052
15.2% of positive pairs demonstrate no geometric overlap.053
This is particularly common for masks corresponding to054
large objects, such as the two ends of a table, the front and055
back faces of a chair, or the left and right sides of a bed.056

2.2. Comparison with Semantic Similarity057

Previous work[2, 4] all use semantic similarity between two058
masks as a clue to decide whether they belong to a same059
object. In this section, we introduce an extra experiment to060
assess the influence of this semantic clue. Specifically, we061
begin by extracting the CLIP feature from the original RGB062
image around each mask, considering it as the semantic fea-063
ture for that mask. Subsequently, we establish a connec-064
tion between masks only when their consensus rate exceeds065
τrate and their semantic similarity surpasses τseman = 0.6.066

Table 1. Effect of semantic clue on mask clustering. Incor-
porating semantic similarity as an additional criterion yields only
marginal performance improvement.

AP AP50 AP25

Ours 12.0 23.3 30.1
Ours + semantics 12.1 23.5 30.2

Table 1 illustrates the results, indicating that the contri-067
bution of semantics is relatively modest: a mere increase068
of +0.1 in AP , +0.2 in AP50, and +0.1 in AP25. Given069
that this enhancement is accompanied by a temporal cost,070
we opt not to include semantic similarity as an additional071
criterion.072

Semantic similarity = 0.475 Semantic similarity = 0.88

Figure 4. Instances of Semantic Similarity Failures. On the left,
the side and frontal view of the same chair exhibit low similarity.
On the right, all chairs in a room appear identical, causing different
chairs to have high similarity.

Fig. 4 highlights typical cases where semantic similarity073
proves unreliable. In line with Fig. 3, we present detailed074
statistics to elucidate this unreliability. Positive and nega-075
tive mask pairs are identified based on their correspondence076

to the same object, according to ground truth annotations. 077
We then calculate the semantic similarity for each pair, il- 078
lustrating the distributions in Fig. 5. The substantial overlap 079
in these distributions indicates that negative pairs can have 080
high similarity, while positive pairs may exhibit low simi- 081
larity. This overlap poses challenges in utilizing semantic 082
similarity as a dependable criterion for determining the re- 083
lationship between two masks. 084

Figure 5. Semantic Similarity Distribution for Positive and
Negative Mask Pairs. The distributions exhibit substantial over-
lap, indicating that negative pairs can possess high similarity,
while positive pairs may exhibit low similarity. This overlap com-
plicates the use of semantic similarity to reliably determine the
relationship between two masks.

3. Discussion about Clustering Methods 085

In Sec. 3.3 of the main paper, we provide a concise explana- 086
tion for our adoption of iterative clustering. In this section, 087
we present supplementary experiments to further justify this 088
selection. 089

For the sake of clarity in our subsequent discussions, let 090
us introduce several key graph theory terms: 091
• Connected component is a set of vertices in a graph that 092

are interconnected by paths. 093
• Clique is a set of vertices in a graph where there exists an 094

edge between every pair of vertices. 095
• Clique cover is a partition of the graph’s vertices into 096

cliques. 097

Table 2. Comparison of different clustering methods.

Clustering Algorithm AP AP50 AP25

Connected component 11.0 21.2 27.5
Clique 11.3 22.0 29.4
Quasi-Clique (HCS) 11.9 22.9 29.7
Ours w/o approximation 11.8 23.1 30.4
Ours 12.0 23.3 30.1

Here, we present several distinct clustering strategies. 098
Connected Component. Instead of employing the iterative 099
approach of merging connected components and updating 100
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edges, we execute this algorithm just once. As depicted101
in Table 2, all metrics exhibit a substantial decline when102
compared to our iterative version. Fig. 6 illustrates that103
this relaxed connectivity requirement leads to severe under-104
segmentation, such as predicting the wall and floor as a sin-105
gle instance, the mirror frame mixed into the wall, and the106
floor drain merged with the floor.107
Clique. To mitigate the issue of under-segmentation, a108
straightforward solution is to elevate the connectivity re-109
quirements of a cluster. A clique, representing a graph with110
maximal connectivity, serves as a potential solution. Conse-111
quently, we aim to identify a clique cover for effective clus-112
tering and merging of masks. The results presented in Ta-113
ble. 2 provide additional evidence supporting this enhance-114
ment of connectivity. However, this extreme requirement in115
connectivity can lead to over-segmentation at times, as il-116
lustrated in Fig. 6, where the wall is over-segmented into117
two pieces.118

RGB Ours

Clique Connected Component

Figure 6. Qualitative results of different clustering methods.
Clique-based clustering tends to over-segment, and single-time
connected component-based clustering tends to under-segment. In
contrast, our iterative clustering method yields perfect results.

Quasi-Clique (HCS). The stringent connectivity require-119
ment often results in over-segmentation issues. In response,120
we explore a relaxation of the clique concept, allowing for121
a fraction of edges to be absent within each cluster, a con-122
dition known as quasi-cliques. The Highly Connected Sub-123
graphs (HCS) clustering algorithm [3] is a standard method124
for efficiently partitioning a graph into such quasi-cliques.125
HCS defines a quasi-clique as a subgraph with n vertices,126
where the minimum cut of the subgraph contains more than127
n/2 edges. They demonstrate that these quasi-cliques ex-128
hibit properties similar to cliques. As illustrated in Table129
2, this relaxation of the clique requirement enhances per-130
formance, yielding results slightly below those of our final131
version. Nevertheless, due to the necessity for HCS algo-132
rithm to iteratively recompute the minimum cut, its compu-133
tational cost exceeds more than twice the time required by134
our algorithm.135
Ours w/o approximation. In Section 3.3 of the main pa-136

per, we employ two approximations, namely F (mnew) ≈ 137
F (mt1,i1) ∪ F (mt2,i2) . . . ∪ F (mts,is) and M(mnew) ≈ 138
M(mt1,i1) ∪ M(mt2,i2) . . . ∪ M(mts,is), to speed up the 139
edge updating process. In this section, we conduct addi- 140
tional experiments to demonstrate the impact of this approx- 141
imation. Table 2 shows that the approximation has minimal 142
effect on all metrics. However, the average time required 143
to merge masks increases from 2.8 minutes to 6.9 minutes. 144
Consequently, we opt to use the approximation as it pro- 145
vides a balance between speed and performance. 146

4. Additional Qualitative Results 147

We present enhanced qualitative results in Fig. 7. Our ap- 148
proach demonstrates the ability to accurately segment small 149
objects, some of which may not be present in the ground 150
truth. Additionally, our method exhibits consistent and ro- 151
bust performance when handling large objects, overcoming 152
challenges faced by the geometric overlap-based method 153
OVIR-3D. 154

5. Implementation Details 155

How do we obtain mask point cloud Pt,i? In this sec- 156
tion, we elaborate on the methodology employed to derive 157
the mask point cloud Pt,i. For every pixel (u, v) within this 158
mask, given the camera intrinsic matrix K ∈ R3×3 and ex- 159
trinsic parameters R ∈ R3×3, T ∈ R3, the back-projection 160
of this pixel into 3D world space is accomplished using the 161
following transformation: 162

(
x y z

)T
= R−1

(
dK−1

(
u v 1

)T − T
)
, (1) 163

where d is the depth value at pixel (u, v). 164

Subsequently, the obtained 3D point (x, y, z) is pro- 165
jected onto the reconstructed point cloud P . There are two 166
reasons for this: 167

• Format Alignment with Ground Truth: Since the 168
ground truth is annotated on the reconstructed point 169
cloud, aligning the raw back-projected point cloud onto 170
it is essential for accurate evaluation. 171

• Efficient Computation: By leveraging the globally- 172
consistent point cloud P , we can utilize a list of indices 173
within P to represent the masked point cloud. This trans- 174
formation converts the subsequent time-consuming geo- 175
metric operation into fast intersection and union opera- 176
tions on lists of indices. 177

Specifically, we use a ball query to identify all points on 178
the reconstructed point cloud that are sufficiently close to 179
the point (x, y, z) (less than 2cm for ScanNet and 3cm for 180
MatterPort3D). The union of such points forms Pt,i. 181
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Figure 7. Comparison of 3D zero-shot segmentation performance. We compare our methods with OpenMask3D [6] and OVIR-3D [4] on
ScanNet [1].

4



CVPR
#9907

CVPR
#9907

CVPR 2024 Submission #9907. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6. Experimental Details182

6.1. Details about MatterPort3D Benchmark183

We use the MatterPort3D test set as our benchmark184
and adopt the 160-category benchmark established185
by OpenScene [5]. As Mask3D encounters out-of-186
memory errors in 9 out of the total 17 scenes, our187
testing is consequently focused on the remaining 8188
scenes: 2t7WUuJeko7, gxdoqLR6rwA, WYY7iVyf5p8,189
YVUC4YcDtcY, ARNzJeq3xxb, gYvKGZ5eRqb,190
RPmz2sHmrrY, YFuZgdQ5vWj.191

To evaluate Mask3D on the MatterPort3D dataset, we192
map each label in ScanNet200 to its similar label in Mat-193
terPort3D, by calculating the similarity score between them194
using a natural language processing tool spaCy and manu-195
ally removing the uncorrected matches. Labels that fail to196
match are tagged invalid. Finally, 164 labels in 200 Scan-197
Net labels are mapped to 115 labels in 160 MatterPort3D198
labels.199

6.2. Details about Hyperparameters200

In our main paper, we use mask visibility threshold τvis =201
0.3, the under-segment mask filtering threshold τfilter =202
0.3, the consensus rate threshold τrate = 0.9 and the203
approximate containment threshold τcontain = 0.8. To204
demonstrate the robustness of our approach to these hyper-205
parameters, we conduct a series of experiments illustrated206
in Fig. 8. The results reveal that even when each parameter207
is varied within the range of ±0.2, the performance remains208
relatively stable.209

𝝉𝒗𝒊𝒔 𝝉𝒇𝒊𝒍𝒕𝒆𝒓

𝝉𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝝉𝒓𝒂𝒕𝒆

Figure 8. Performance Variation with Changing Hyperparam-
eters..
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