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1. Video Comparison
To better demonstrate the improvement of our algorithm
in quality and speed for different resolutions, we include a
video comparing our results with the original 3D Gaussian
Splatting[3] at multiple scenes from different views and res-
olutions.

2. Details of Gaussian Aggregation Algorithm
Due to the space constraint of the main paper, some details
of the Gaussian aggregation process are omitted. In this
section, we will elaborate further with some examples to
help the readers understand and reproduce our work. The
process consists of the following steps:

Render at Lower Resolution. Since we want to insert
large Gaussians that are of appropriate size to be rendered
at lower resolutions, we need to aggregate small Gaussians
to form large Gaussians. Pixel coverage is used to deter-
mine whether a Gaussian is too small, we need to render all
Gaussians first to calculate their pixel coverage at all train-
ing cameras. For all coarse levels lm = [2, lmax], we render
all Gaussians from [1, lm − 1] at 4lm−1 times downsampled
resolution. For example, we render all Gaussians from level
1 to 3 at the 64× downsampled resolution from all train-
ing cameras to add large Gaussians for level 4. A Gaussian
splatted to any of the training cameras with a pixel coverage
Sk smaller than ST is considered too small, and is included
for the next step of aggregation.

3. Theoretical Anti-aliasing Effectiveness of
Gaussian Aggregation for 1D Signals

Our algorithm eschews low-pass filters for individual Gaus-
sians as they do not mitigate the slow rendering speed. In-
stead, as shown in Fig. 1, we opt to substitute smaller Gaus-
sians with fewer, larger ones, reducing the signal bandwidth
and the number of primitives rendered. Heeding the re-
viewer’s suggestion, we now delve deeper into the signal-
processing analysis of our algorithm’s anti-aliasing effect
from first principles. Aliasing arises when a signal’s band-
width surpasses half the sampling frequency, as per Nyquist
sampling theorem. Taking the mixture of 1D Gausssians
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prove that in our algorithm, they are consistently substituted
with a Gaussian whose 3dB bandwidth is below the aliasing
frequency threshold 0.5px−1.

According to our algorithm, the mixture of Gaussians
is first aggregated into an average Gaussian gavg(x) =

Figure 1. Instead of low-pass filters, we replace smaller Gaussians with fewer larger
Gaussians, ensuring their bandwidth is below the aliasing threshold 0.5px−1.
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Our algorithm then scales standard deviation up by
ST /S, where ST = 2px is the selective rendering thresh-
old and S is the pixel coverage of the Gaussian. We de-
termine S by calculating the size at its level set, solving
e−a(0.5S)2 = 1/N with 1/N = 1/255 on 8-bit color im-

ages. This yields S = 2
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This indicates that the bandwidth of the scaled Gaussians
remains invariant to the attributes of the smaller Gaussians
they replace, and is below half of the sampling frequency to
avoid aliasing. While differing from the traditional low-pass
filtering, our method is equally effective in anti-aliasing but
more efficient in rendering.

Unbounded Scene Normalization. The Gaussians can
be located at the range of (−∞,∞) in unbounded scenes.
This is not suitable for voxelization later as only a limited
amount of voxels can be used. To normalize the unbounded
space, the center region and the outer region are handled
in different manners. The space bounded by a axis-aligned
cube of length B defined by the span of all training cameras
is considered the center region, and the rest is considered
the outer region. To preserve the structure in the center re-
gion, the coordinates are linearly scaled from [−B,B] to
[−1, 1]. To normalize the unbounded outer region, the co-
ordinates are non-linearly scaled from (−∞,∞) to (−2, 2).



The exact normalization is as follows:

xnorm =

{
x/B, ifmax(|x|) ≤ B

2−B/x, otherwise
. (3)

Voxelization. After the Gaussian positions are normal-
ized to [−2, 2], they need to be voxelized so that all Gaus-
sians in one voxel are grouped together for the aggrega-
tion later. The size of the voxel increases as the resolu-
tions decrease because coarser levels require fewer larger
Gaussians. Specifically, when inserting large Gaussians for
level lm, the voxel size is chosen to be an empirical value of
(400/lm)3. All Gaussians with their center in one voxel are
grouped together for the next step. Although it is possible
for a Gaussian to extent beyond the voxel while its center
resides in the voxel, it is unlikely to reach too far as large
Gaussians are filtered out in the earlier procedure.

Average Pooling and Enlargement After the small
Gaussians are grouped in individual voxels, their param-
eters are averaged to create the large Gaussian. Specif-
ically, the large Gaussian takes the average position, ro-
tation, spherical harmonics features, opacity and scaling.
However, a new Gaussian would be too small if it remains
at this scaling. Consequently, we calculate the average pixel
coverage of all the aggregated small Gaussians Savg using
their pixel coverage derived earlier. The scaling of the new
Gaussian is then enlarged by ST /Savg for its pixel coverage
to be approximately ST , which is suitable to be rendered at
level lm. This average pooling is not perfect, but simple
and effective enough to produce a reasonable initialization
for the multi-scale training later.

4. Qualitative Ablation Study
To better compare the effectiveness of each of our proposed
module qualitatively, we present the rendering results of our
method and various ablation models in Fig. 2–6. The ab-
lation model design follows the experiment section in the
main paper. Specifically, the “+MS Train” model is trained
using multi-scale images, but the Gaussians are only of a
single scale as in 3D Gaussian Splatting [3]. The low-
resolution performance is slightly improved, but the ren-
dering speed is as slow as the original method. The “+Fil-
ter Small” model filters the small Gaussians based on the
pixel coverage on top of the multi-scale training. It signifi-
cantly accelerates the low-resolution rendering process, but
the scene has some part missing as shown in the rendered
images. The image rendered also has artifacts like black
dots at low resolutions, caused by the filtered small Gaus-
sians. The “+Insert Large” model inserts the large Gaus-
sians from aggregation on top of the multi-scale training.
It has good rendering speed and quality at low resolutions,

but the image rendered at high resolution is over-smoothed.
This is caused by the finer level Gaussians not filtered out
but optimized together with the inserted large Gaussians at
low resolutions. Our ”Full Method” overcomes the weak-
ness of the ablation models and produces high-quality ren-
dering at fast speed on both high and low resolutions. The
small Gaussians filtered improves the speed, and the large
Gaussians inserted improves the quality at low resolutions.
The qualitative ablation supports the effectiveness of our
proposed components.

5. Quantitative Results on More Resolutions
We present the quantitative results of our method, the orig-
inal 3D Gaussian Splatting[3], and the various ablation
methods on more downsampled resolutions. The resolu-
tions include those that are not used during training which
demonstrate the performance and robustness of our model.
The experiments are conducted on MipNeRF-360 dataset
[1] as shown in Tab. 1, Tank and Temple dataset [4] as
shown in Tab. 2, and Deep Blending dataset [2] as shown
in Tab. 3.

6. Per-Scene Quantitative Results
We present the per-scene decomposition of the quantitative
results of our method and the original 3D Gaussian splat-
ting [3] in various resolutions. The experiments are carried
on MipNeRF-360 dataset [1] as shown in Tab. 4, Tank and
Temple dataset [4] as shown in Tab. 5, and Deep Blending
dataset [2] as shown in Tab. 6. The scenes chosen to be
tested on follow the experiments carried out in the original
3D Gaussian splatting paper [3].



Figure 2. Qualitative ablation results of our proposed method on the ”Bicycle” scene.

Table 1. Quantitative comparison and ablation study on MipNeRF 360 dataset [1] at more downsampled scales, with time in “ms”.

Scale 1x 2x 4x 8x

Metric PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓

3D Gaussian[3] 27.52 0.142 10.5 25.96 0.124 8.0 22.50 0.137 9.3 19.79 0.154 14.6
3DGS + MS Train 27.35 0.155 11.3 26.33 0.128 7.3 23.50 0.126 7.7 21.38 0.131 12.1
3DGS + Filter Small 27.40 0.153 10.0 26.42 0.129 6.8 23.81 0.149 5.4 21.73 0.175 5.1
3DGS + Insert Large 18.02 0.604 9.7 18.28 0.593 3.4 18.75 0.531 2.5 19.39 0.419 2.2
Our Method 27.39 0.155 9.1 26.44 0.134 6.3 24.82 0.132 5.4 24.44 0.112 5.1

Scale 16x 32x 64x 128x

Metric PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓

3D Gaussian[3] 17.79 0.149 27.9 16.30 0.084 55.2 15.23 N.A. 103.3 14.55 N.A. 123.2
3DGS + MS Train 20.21 0.115 22.8 19.80 0.060 45.6 19.38 N.A. 84.8 18.75 N.A. 100.1
3DGS + Filter Small 20.02 0.186 4.8 18.81 0.090 4.4 17.38 N.A. 4.6 16.13 N.A. 4.8
3DGS + Insert Large 20.23 0.256 2.7 21.17 0.081 4.6 21.53 N.A. 7.1 20.25 N.A. 9.4
Our Method 24.75 0.066 4.9 25.06 0.025 4.7 25.35 N.A. 4.9 22.55 N.A. 5.0



Figure 3. Qualitative ablation results of our proposed method on the ”Counter” scene.

Table 2. Quantitative comparison and ablation study on Tank and Temple dataset [4] at more downsampled scales, with time in “ms”.

Scale 1x 2x 4x 8x

Metric PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓

3D Gaussian[3] 23.74 0.096 6.5 22.55 0.080 7.1 19.70 0.105 11.1 17.34 0.117 21.5
3DGS + MS Train 22.97 0.118 6.0 23.04 0.083 6.3 21.46 0.086 9.6 20.18 0.080 18.5
3DGS + Filter Small 23.78 0.100 5.6 22.76 0.079 5.1 20.12 0.107 4.5 18.62 0.122 4.4
3DGS + Insert Large 10.84 0.697 5.1 10.96 0.719 2.4 11.15 0.703 1.7 11.40 0.631 1.6
Our Method 23.46 0.111 7.6 22.44 0.095 5.6 21.92 0.087 4.7 20.88 0.082 4.6

Scale 16x 32x 64x

Metric PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓

3D Gaussian[3] 15.61 0.068 43.4 14.45 N.A. 70.9 13.88 N.A. 82.6
3DGS + MS Train 18.56 0.049 37.4 17.41 N.A. 61.7 16.54 N.A. 71.7
3DGS + Filter Small 17.41 0.072 4.4 16.05 N.A. 4.5 14.95 N.A. 4.7
3DGS + Insert Large 11.73 0.447 1.7 12.14 N.A. 2.1 12.62 N.A. 2.5
Our Method 20.91 0.034 4.8 21.01 N.A. 5.4 19.67 N.A. 5.9



Figure 4. Qualitative ablation results of our proposed method on the ”Garden” scene.

Table 3. Quantitative comparison and ablation study on Deep Blending dataset [2] at more downsampled scales, with time in “ms”.

Scale 1x 2x 4x 8x

Metric PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓

3D Gaussian[3] 29.65 0.094 8.6 29.41 0.065 6.6 27.48 0.066 7.5 24.67 0.076 11.3
3DGS + MS Train 29.46 0.102 6.6 29.42 0.069 4.8 28.18 0.062 5.3 26.15 0.065 8.0
3DGS + Filter Small 29.68 0.095 6.7 29.53 0.064 4.9 28.26 0.064 4.2 26.51 0.082 3.8
3DGS + Insert Large 20.59 0.379 4.6 20.67 0.381 2.2 20.83 0.336 1.6 21.07 0.263 1.7
Our Method 29.70 0.096 7.4 29.58 0.065 4.8 28.43 0.064 3.9 27.59 0.063 3.6

Scale 16x 32x 64x

Metric PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓ PSNR↑ LPIPS↓ Time↓

3D Gaussian[3] 22.06 0.067 20.7 19.74 N.A. 36.3 17.75 N.A. 59.7
3DGS + MS Train 24.13 0.055 14.3 22.09 N.A. 24.8 20.03 N.A. 41.3
3DGS + Filter Small 24.52 0.078 3.6 22.01 N.A. 3.3 18.29 N.A. 3.2
3DGS + Insert Large 21.29 0.143 2.1 21.14 N.A. 2.8 20.10 N.A. 4.2
Our Method 27.66 0.036 3.4 27.22 N.A. 3.3 25.70 N.A. 3.4



Figure 5. Qualitative ablation results of our proposed method on the ”Treehill” scene.



Figure 6. Qualitative ablation results of our proposed method on the ”Truck” scene.



Table 4. Per-scene performance decomposition on MipNeRF-360 dataset[1]. Time measured in ’ms’.

Scale 1x 4x 16x 64x 128x

Scene Metric PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓

garden 3D-GS[3] 27.27 0.070 15.0 20.42 0.136 14.4 16.74 0.166 48.8 14.92 N.A. 200.9 14.29 N.A. 245.0
garden Ours 27.16 0.080 11.8 23.99 0.112 7.8 26.41 0.044 7.5 24.79 N.A. 8.6 21.19 N.A. 9.6
flowers 3D-GS[3] 21.41 0.309 9.1 18.89 0.239 8.8 15.46 0.165 24.9 13.90 N.A. 93.2 13.69 N.A. 112.2
flowers Ours 21.11 0.333 8.1 20.83 0.234 5.7 21.97 0.093 5.1 22.69 N.A. 4.9 21.82 N.A. 5.0
treehill 3D-GS[3] 22.60 0.274 10.0 21.63 0.232 9.7 18.71 0.193 24.6 16.19 N.A. 90.6 15.52 N.A. 97.0
treehill Ours 22.64 0.291 8.7 22.31 0.239 5.8 23.55 0.072 5.4 24.28 N.A. 4.9 22.27 N.A. 5.0
bicycle 3D-GS[3] 25.15 0.164 18.8 19.71 0.178 15.5 16.27 0.215 43.9 14.99 N.A. 163.8 15.15 N.A. 187.0
bicycle Ours 24.44 0.210 13.4 24.76 0.131 7.4 25.00 0.081 6.4 26.02 N.A. 6.5 21.56 N.A. 6.9
counter 3D-GS[3] 29.15 0.099 7.5 24.81 0.084 6.4 17.94 0.101 19.2 14.32 N.A. 60.4 13.39 N.A. 74.6
counter Ours 29.17 0.100 6.6 26.77 0.076 3.3 23.44 0.057 2.8 24.59 N.A. 2.7 21.14 N.A. 2.7
kitchen 3D-GS[3] 31.70 0.064 9.3 23.95 0.081 8.5 18.50 0.093 35.4 15.00 N.A. 124.4 14.15 N.A. 150.3
kitchen Ours 31.64 0.064 8.1 25.93 0.089 4.2 24.16 0.049 3.9 25.35 N.A. 3.3 21.50 N.A. 3.2
room 3D-GS[3] 31.63 0.093 8.0 26.60 0.057 5.1 19.50 0.096 12.0 15.50 N.A. 49.2 14.37 N.A. 70.8
room Ours 31.51 0.094 6.6 28.95 0.053 3.1 28.15 0.025 2.9 25.77 N.A. 2.9 21.82 N.A. 2.9
stump 3D-GS[3] 26.75 0.138 10.6 22.24 0.152 10.1 18.57 0.188 26.5 17.33 N.A. 95.2 16.97 N.A. 114.0
stump Ours 26.59 0.152 12.9 23.52 0.150 8.2 25.22 0.112 7.2 29.22 N.A. 7.1 29.09 N.A. 7.2
bonsai 3D-GS[3] 32.04 0.065 6.0 24.23 0.075 5.3 18.43 0.126 15.4 14.95 N.A. 52.4 13.46 N.A. 57.9
bonsai Ours 32.27 0.067 5.5 26.32 0.106 3.3 24.87 0.062 2.8 25.40 N.A. 2.9 22.53 N.A. 2.8

Table 5. Per-scene performance decomposition on Tank and Temple dataset[4]. Time measured in ’ms’.

Scale 1x 4x 16x 64x

Scene Metric PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓

truck 3D-GS[3] 25.39 0.064 7.3 19.97 0.103 11.3 15.69 0.064 49.2 14.20 N.A. 89.1
truck Ours 24.94 0.078 9.0 23.67 0.059 5.4 22.62 0.024 6.0 19.99 N.A. 8.6
train 3D-GS[3] 22.09 0.129 5.8 19.42 0.108 10.9 15.54 0.072 37.6 13.57 N.A. 76.1
train Ours 21.98 0.144 6.2 20.17 0.114 3.9 19.21 0.044 3.5 19.36 N.A. 3.3

Table 6. Per-scene performance decomposition on Deep Blending dataset[2] Time measured in ’ms’.

Scale 1x 4x 16x 64x

Scene Metric PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓ PSNR↑ LPIPS↓Time↓

drjohnson 3D-GS[3] 29.14 0.106 10.1 27.23 0.079 9.3 22.73 0.078 26.3 18.60 N.A. 67.6
drjohnson Ours 29.19 0.108 8.6 27.96 0.078 4.4 26.80 0.051 3.9 27.19 N.A. 3.8
playroom 3D-GS[3] 30.15 0.082 7.0 27.72 0.053 5.7 21.40 0.056 15.0 16.89 N.A. 51.8
playroom Ours 30.20 0.084 6.2 28.89 0.051 3.4 28.53 0.020 3.0 24.22 N.A. 3.0



References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2, 3, 8

[2] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Trans. Graph.,
37(6), 2018. 2, 5, 8

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4), 2023.
1, 2, 3, 4, 5, 8

[4] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
2, 4, 8


	. Video Comparison
	. Details of Gaussian Aggregation Algorithm
	. Theoretical Anti-aliasing Effectiveness of Gaussian Aggregation for 1D Signals
	. Qualitative Ablation Study
	. Quantitative Results on More Resolutions
	. Per-Scene Quantitative Results

