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Supplementary Material

8. Implementation Details
Here’s the overall algorithm of our proposed method MOSE
in a standard OCL training scenario.

Algorithm 1 Training Algorithm of MOSE

Require:
D = {Dt}t≤T : training dataset
Network F with its experts {Ei}i≤n
Aug(·): augmentation transformation

Ensure: Multi-level supervision of sequential experts and
reverse self-distillation in the OCL network

1: for all task t ≤ T do
2: for all incoming batch: Bt ∼ Dt do
3: Memory retrieval: BM ∼M, B = Bt ∪ BM
4: Augmentation: B̃ = B ∪ Aug(B)
5: Calculate LMLS and LRSD over B̃
6: Update F , {Ei}i≤n with LMOSE = LMLS + LRSD
7: Memory update:M←M,Bt
8: end for
9: end for

Buffer 200 500 1000 2000

SD 11.9±0.8 22.0±0.8 30.6±0.7 41.9±0.4
RSD (ours) 20.2±0.5 28.3±0.7 35.1±0.4 45.1±0.3

Table 5. SD v.s. RSD. ACC over Split CIFAR-100 for four differ-
ent memory buffer sizes.

Model Time # Params #FLOPs ACC ↑ AF ↓
SCR+Lce 8.8min 11.29M 558.55M 22.3±0.4 45.8±0.2
w/ MLS 17.3min 12.81M 586.78M 31.6±0.8 39.1±1.2

w/ MLS,RSD 17.5min 12.81M 590.64M 35.1±0.4 36.9±0.3

Table 6. Training Cost of Components. Recorded for Split
CIFAR-100 with M = 5k.

8.1. Network Architecture

Our model is based on the architecture of a full-width
ResNet18 [25] as mentioned in Sec. 5.1, where the original
embedding dimension of feature vector output by the fea-
ture extractor fθ is d = 512. The feature maps produced by
each block are of different sizes in shape: (channel, height,
width). Therefore the feature alignment modules {aωi

}4i=1

are designed to further encode those feature maps into the
same dimension space with as little computational cost as
possible. Here we list the details of the necessary compo-
nents of {aωi

}4i=1 in Tab. 7.
As for projection heads {pψi}4i=1 and {gϕi}4i=1, we use

fully connected layers Linear(512, l) and Linear(512, |C|)
to project the feature vector into a new embedding space
of dimension l = 128 (as SCR [40] and OCM [21]) and
the logit space with dimension equal to the number of im-
age classes |C|. Alignment modules and projection heads
will all be dropped once the network’s continual learning
procedure is accomplished. At the testing phase, we only
calculate the feature means for each class in the feature
space with dimension d = 512 and use the NCM classi-
fier [40, 44]. There is no other additional storage cost.

8.2. Evaluation Metrics

We first train all continual learners task-wise with corre-
sponding training samples, then test them with test samples
for all classes when training is complete. We use two com-
monly used metrics Average Accuracy (ACC) and Average
Forgetting (AF) to evaluate their performance on bench-
marks following [20, 21, 41, 51, 52]:

ACC =
1

T

T∑
t=1

acct,T ,

AF =
1

T − 1

T−1∑
t=1

(
max
i≤T−1

acct,i − acct,T

)
,

(11)

where ai,j is the test accuracy of task i when the model has
been trained on task from 1 to j, and T is the total num-
ber of tasks. ACC represents the final remaining skills for
all incrementally learned tasks, which is ultimately the opti-
mization goal of a continual learner, and AF shows how the
CL algorithm resists the catastrophic forgetting issue.

9. Additional Ablation Studies

In this section, we present the additional results of the ab-
lation study to discuss the effect of our choices of each al-
gorithm component on the final OCL performance (average
task accuracy). We take Split CIFAR-100 with 10 tasks as
the benchmark, and all tests are conducted over different se-
tups with memory buffer sizes M = 1000, 2000, and 5000
for 15 different random runs.



9.1. RSD Variations

In Sec. 4.2, we use the task-wise final test accuracy (ai,T )
of each expert with or without the RSD loss within Tab.1.
It shows that RSD successfully transfers useful knowl-
edge from different teacher experts Ei≤3 to the final pre-
dictor E4 = F . Compared to traditional self-distillation
(SD) [72], RSD enhances the final predictor on purpose. We
show the difference of ACC between SD and RSD in Tab. 5,
indicating the effectiveness of our artificial modification to
distillation direction.

We further test RSD with different experts being the stu-
dent expert who learns from others. Average accuracy and
Ei≤tai,t and final task-wise test accuracy at,T of different
task t are depicted in Fig. 5 and Fig. 6. They suggest that:
(1) choosing a different expert as the student does not signif-
icantly affect the MOE performance; (2) with a larger mem-
ory buffer size M , variation grows and experts at deeper
stages exhibit greater potential of learning from other ex-
perts. Detailed results data of at,T in Tab. 8 make these
points more clear.

9.2. Data Augmentation

As described in Sec.5.1, we use a transformation opera-
tion combining random horizontal flip, random grayscale,
and random resized crop, following SimCLR [11] and
OCM [21] (we denote this data augmentation combination
as SimCLR). Our proposed method MOSE also utilizes the
contrastive loss Lscl of SCR [40], where a different data
augmentation combination is used: random resized crop,
random horizontal flip, color jitter, and random grayscale
(we denote it as SCR). For situations with both types of
augmentation and whether inner flip operation (proposed in
OCM [21]) is used to double the training samples, we con-
ducted a contrast experiment whose results are recorded in
Fig. 7 (average accuracy and final task-wise accuracy) and
Tab. 9 (final task-wise accuracy).

We conclude from the above tests that, the choice of aug-
mentation indeed affects the performance of our method
MOSE. The usage of a more complex and diverse aug-
mentation combination does not guarantee better accuracy.
For example, the insertion of color jitter or inner flip re-
sults in quite different task-wise performance. However, in-
creasing the number of training samples through augmenta-
tion is validated to be an effective approach. This type of
improvement remains consistent across different memory
buffer sizes.

The inner flip operation rotates half of the image ver-
tically. Thus there are in total 2 × 2 = 4 different
possible flipped versions of one image. On top of that,
OCM [21] and OnPro [67] also utilize global rotation and
create 4×4 = 16 augmented versions of each single image.
In order not to further increase the number of computations
and GPU memory usage of training so that the comparison

with other methods is fair, we choose to use inner flip only
to double the training samples. Even so, the final perfor-
mance improvement brought by MOSE is already evident.

9.3. NCM Classifiers

For each expert {Ei}i≤4 we choose to use the NCM clas-
sifier to output the final prediction. Compared to the tra-
ditional linear output head, the NCM classifier is based
on feature representation and is constrained by the mem-
ory buffer size. Here we show the results of using these
two types of classifiers (along with the MOE version) under
our MOSE framework in Fig. 8 (average accuracy and final
task-wise accuracy) and Tab. 10 (final task-wise accuracy).

From the above tests, we see that these two types of clas-
sifiers present similar inter-task behavior: the last trained
task has a significantly larger test accuracy than the previous
ones. The representation-based NCM classifier generally
outperforms the linear classifier, indicating its superiority
within our proposed framework which relies on multi-level
feature representation learning.

10. Baseline Codes and Efficiency
For all baselines tested in Sec. 5, the common hyperparame-
ters are fixed to give a fair comparison, including batch size
B = 10, memory buffer size BM = 64 and random seed
0. For other algorithm-specific setups, we keep the default
implementation based on their source codes in Tab. 11 and
refer to the training details of OCM [21].

10.1. Running Time Comparison.

We run all of our experiments on an NVIDIA RTX3090-
Turbo GPU. Here to display the training efficiency, we
record the training time over the Split CIFAR-100 dataset
for all OCL baselines including MOSE in Fig. 9. Notice
that the introduction of data augmentation also increases
the training time. Tab. 6 demonstrates the training cost and
computational complexity for components of MOSE.

Our proposed MOSE achieves a relatively efficient result
compared to other baselines with a training time of around
15 minutes over the Split CIFAR-100 dataset (50000 im-
ages in total). The calculation of expert-wise loss doubles
the training time of each image compared to ER [10] and
SCR [40] which have the same supervision loss as MOSE.

11. Overfitting-Underfitting Dilemma
To further investigate the multi-level expert design in ad-
dressing the proposed overfitting-underfitting dilemma, we
record the new task accuracy at,t for each expert with or
without using RSD (take the final expert E4 as the student),
as well as average BOF value of old tasks (see Eq. 5).

Accuracy at,t represents the performance of learning
each new incoming task, and BOF indicates how well the



buffer overfitting issue is dealt with (lower is better). All
tests are conducted over the dataset Split CIFAR-100 with
three different memory sizes for 15 random runs. Based on
results in Fig. 10 and Fig. 11, we explain the effectiveness
of MOSE in solving the overfitting-underfitting dilemma as
follows:
1. From Fig. 10, it is clear that experts have different per-

formances in learning new tasks: deeper ones (E3 and
E4) generally learn better than experts (E1 andE2) from
shallower layers. The RSD loss has no noticeable effect
on E4 the last expert’s learning of the new task, which
means its ability to avoid the underfitting problem of the
new task is preserved.

2. From Fig. 11, experts show varying degrees of buffer
overfitting, with shallower experts doing slightly better.
The average BOF value of the last expert E4 is signifi-
cantly improved with the help of RSD. This is benefited
from the various feature representations learned by all
experts. This is consistent with the discussion of the ab-
lation study in Sec. 5.2). In other words, knowledge of
feature representation in shallower expertsEi≤3 is trans-
ferred to the final predictorE4 = F and it helps alleviate
the buffer overfitting problem of old tasks.
The above statement holds for OCL with different mem-

ory sizes, demonstrating the excellent compatibility of
multi-level feature learning and self-distillation and show-
casing a synergy within MOSE where the sum is greater
than its parts.



Expert aω1
aω2

aω3
aω4

input shape (16, 32, 32) (128, 16, 16) (256, 8, 8) (512, 4, 4)

composition



Conv3x3(Cin, Cin, s=2, g=Cin)
Conv1x1(Cin, Cin, s=1, g=1)
BatchNorm(Cin)
ReLU()
Conv3x3(Cin, Cin, s=1, g=Cin)
Conv1x1(Cin, Cin × 2, s=1, g=1)
BatchNorm(Cin × 2)
ReLU()


× 3



Conv3x3(Cin, Cin, s=2, g=Cin)
Conv1x1(Cin, Cin, s=1, g=1)
BatchNorm(Cin)
ReLU()
Conv3x3(Cin, Cin, s=1, g=Cin)
Conv1x1(Cin, Cin × 2, s=1, g=1)
BatchNorm(Cin × 2)
ReLU()


× 2



Conv3x3(Cin, Cin, s=2, g=Cin)
Conv1x1(Cin, Cin, s=1, g=1)
BatchNorm(Cin)
ReLU()
Conv3x3(Cin, Cin, s=1, g=Cin)
Conv1x1(Cin, Cin × 2, s=1, g=1)
BatchNorm(Cin × 2)
ReLU()


× 1 Identity()

+AdaptiveAvgPool2d(1,1) +AdaptiveAvgPool2d(1,1) +AdaptiveAvgPool2d(1,1) +AdaptiveAvgPool2d(1,1)

output dimension 512 512 512 512

# of parameters 268800 254976 202752 0

Table 7. Composition of Alignment Modules. Each alignment module contains consecutive similar blocks to down-sample the maps’
sizes and increase their channel dimensions. Conv3x3 and Conv1x1 are convolutional layers with kernel size (3, 3) and (1, 1), respec-
tively. s stands for stride and g means number of groups. BatchNorm, ReLU, and AdaptiveAvgPool2d are common network layers: batch
normalization, ReLU activation, and adaptive average 2D pooling layers. Identity() function outputs the input feature map directly.

(a) Average Accuracy at M = 1k (b) Average Accuracy at M = 2k (c) Average Accuracy at M = 5k

(d) MOE Average Accuracy at M = 1k (e) MOE Average Accuracy at M = 2k (f) MOE Average Accuracy at M = 5k

Figure 5. Average Accuracy with Different Student Expert. Here presents the average test accuracy Ei≤tai,t at different task t during
training. E1, E2, E3, and E4 denote the student experts used in our proposed RSD. (a), (b) and (c) are accuracy results of corresponding
student expert; (d), (e) and (f) are accuracy results of their MOE version, which is the accuracy of averaged output logits across all experts.



(a) Final Accuracy at M = 1k (b) Final Accuracy at M = 2k (c) Final Accuracy at M = 5k

(d) MOE Final Accuracy at M = 1k (e) MOE Final Accuracy at M = 2k (f) MOE Final Accuracy at M = 5k

Figure 6. Final Task-wise Accuracy with Different Student Expert. Here presents the final task-wise test accuracy at,T of different task
t after OCL training is complete. E1, E2, E3, and E4 denote the student experts used in our proposed RSD. (a), (b) and (c) are accuracy
results of corresponding student expert; (d), (e) and (f) are accuracy results of their MOE version.

Experts task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 Average

M = 1k

E1 27.72 25.36 35.62 25.50 30.54 35.90 39.26 40.60 45.86 57.18 36.35
E2 29.00 23.80 34.94 25.18 31.66 37.26 39.88 43.46 47.48 62.04 37.47
E3 25.56 18.56 31.54 22.24 28.00 35.36 36.20 42.60 51.66 71.84 36.36
E4 24.76 17.84 29.62 21.22 26.14 32.98 35.00 38.88 48.58 75.00 35.00

M = 2k

E1 40.60 37.18 44.32 37.36 41.00 45.28 45.58 44.74 48.90 53.28 43.82
E2 41.10 37.14 45.44 36.92 42.86 47.12 47.56 47.18 51.76 57.06 45.41
E3 38.98 35.02 43.86 33.90 40.16 45.50 46.44 48.92 55.40 64.80 45.30
E4 38.48 32.66 42.30 30.66 38.56 44.08 45.60 47.08 54.84 69.74 44.40

M = 5k

E1 49.94 47.16 55.94 45.92 49.96 53.50 51.54 48.50 52.28 50.80 50.55
E2 52.90 49.58 56.66 48.20 52.14 55.08 53.20 51.62 55.70 53.24 52.83
E3 52.70 47.80 57.58 48.38 51.76 56.02 54.84 54.32 58.90 59.04 54.13
E4 53.36 47.70 56.82 47.18 52.30 55.66 54.62 55.62 60.96 62.12 54.63

Table 8. Final Task-wise Accuracy with Different Student Expert. Here presents the final task-wise test accuracy at,T of different task
t after OCL training is complete. E1, E2, E3, and E4 denote the student experts used in our proposed RSD.



(a) Average Accuracy at M = 1k (b) Average Accuracy at M = 2k (c) Average Accuracy at M = 5k

(d) Final Accuracy at M = 1k (e) Final Accuracy at M = 2k (f) Final Accuracy at M = 5k

Figure 7. Data augmentation. Here presents the average test accuracy Ei≤tai,t and final task-wise accuracy at,T at different task t during
training. Four different training setups, where we use SCR or SimCLR augmentation combination and whether inner flip is introduced, are
tested with three memory buffer sizes. (a), (b) and (c) are average test accuracy results; (d), (e) and (f) are final task-wise accuracy results.

Experts task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 Average

M = 1k

SCR w/o flip 23.88 17.66 29.56 18.64 24.34 32.18 32.00 32.98 43.30 66.36 32.09
SimCLR w/o flip 25.74 19.74 29.78 21.18 26.64 32.26 34.36 38.98 46.68 71.84 34.72
SCR 25.18 18.62 28.32 19.32 25.16 32.92 33.44 35.72 44.12 71.08 33.39
SimCLR 24.76 17.84 29.62 21.22 26.14 32.98 35.00 38.88 48.58 75.00 35.00

M = 2k

SCR w/o flip 34.26 30.98 40.02 30.70 35.64 41.20 43.48 42.88 50.94 59.58 40.97
SimCLR w/o flip 37.92 32.20 42.54 31.30 37.66 42.62 44.16 46.64 53.34 66.94 43.53
SCR 35.88 31.22 41.98 30.90 37.86 42.22 43.18 43.86 55.38 66.46 42.89
SimCLR 38.48 32.66 42.30 30.66 38.56 44.08 45.60 47.08 54.84 69.74 44.40

M = 5k

SCR w/o flip 46.30 44.38 52.94 42.26 47.56 50.74 49.44 48.12 53.24 56.92 49.19
SimCLR w/o flip 50.60 46.00 55.48 44.02 50.58 54.12 53.32 51.70 58.18 58.28 52.23
SCR 49.48 46.84 55.00 44.30 50.50 53.28 53.92 51.00 57.38 58.84 52.05
SimCLR 53.36 47.70 56.82 47.18 52.30 55.66 54.62 55.62 60.96 62.12 54.63

Table 9. Data augmentation. Here presents the final task-wise accuracy at,T at different task t during training. Four different training
setups, where we use SCR or SimCLR augmentation combination and whether inner flip is introduced, are tested with three memory sizes.



(a) Average Accuracy at M = 1k (b) Average Accuracy at M = 2k (c) Average Accuracy at M = 5k

(d) Final Accuracy at M = 1k (e) Final Accuracy at M = 2k (f) Final Accuracy at M = 5k

Figure 8. NCM or Linear Classifier. Here presents the average test accuracy Ei≤tai,t and final task-wise accuracy at,T at different task
t during training. Four different training setups, where we use NCM or linear classifier along with its MOE versions, are tested with three
memory buffer sizes. (a), (b) and (c) are average test accuracy results; (d), (e) and (f) are final task-wise accuracy results.

Experts task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 Average

M = 1k

linear 19.68 13.22 24.00 15.36 19.82 28.00 28.40 32.48 40.80 79.50 30.13
NCM 24.76 17.84 29.62 21.22 26.14 32.98 35.00 38.88 48.58 75.00 35.00
linear(MOE) 19.80 13.54 24.08 15.08 20.76 28.46 29.62 34.98 43.04 81.64 31.10
NCM(MOE) 26.88 20.56 33.00 23.56 29.88 35.54 38.08 42.70 51.52 72.62 37.43

M = 2k

linear 33.08 27.34 35.44 26.30 34.70 41.88 41.70 42.60 53.62 72.98 40.96
NCM 38.48 32.66 42.30 30.66 38.56 44.08 45.60 47.08 54.84 69.74 44.40
linear(MOE) 34.08 27.80 36.44 26.46 35.12 42.42 43.30 44.60 56.24 74.94 42.14
NCM(MOE) 40.20 35.60 45.24 34.44 40.74 46.42 47.88 49.50 56.92 67.58 46.45

M = 5k

linear 50.22 43.18 51.48 43.88 48.06 50.10 52.04 52.22 59.18 64.36 51.47
NCM 53.36 47.70 56.82 47.18 52.30 55.66 54.62 55.62 60.96 62.12 54.63
linear(MOE) 51.08 44.82 53.98 44.62 51.40 53.36 54.42 55.40 62.38 66.28 53.77
NCM(MOE) 55.04 49.24 57.86 48.14 53.60 56.86 54.96 56.00 61.16 61.20 55.41

Table 10. Data augmentation. Here presents the final task-wise accuracy at,T at different task t during training. Four different training
setups, where we use NCM or linear classifier along with its MOE versions, are tested with three memory buffer sizes.



Baseline Source Code Links

AGEM https://github.com/facebookresearch/agem
ER and MIR https://github.com/optimass/Maximally Interfered Retrieval

GSS https://github.com/rahafaljundi/Gradient-based-Sample-Selection
ASER and SCR https://github.com/RaptorMai/online-continual-learning

ER-AML https://github.com/pclucas14/AML
GDumb https://github.com/drimpossible/GDumb

OCM https://github.com/gydpku/OCM
OnPro https://github.com/weilllllls/OnPro

GSA https://github.com/gydpku/GSA
DER++ https://github.com/aimagelab/mammoth

IL2A https://github.com/Impression2805/IL2A
Co2L https://github.com/chaht01/Co2L

LUCIR https://github.com/hshustc/CVPR19 Incremental Learning
CCIL https://github.com/sud0301/essentials for CIL

BiC https://github.com/sairin1202/BIC
SSIL https://github.com/hongjoon0805/SS-IL-Official

Table 11. Baseline Source Code Links. We list the official source links of all tested baseline algorithms.

Figure 9. Training Time (min). Here we show the training time of all tested OCL methods over the dataset Split CIFAR-100 with memory
size M = 5000. Time for our proposed method MOSE is colored in green for better visual presentation.
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(a) New Task Accuracy at M = 1k (b) New Task Accuracy at M = 2k (c) New Task Accuracy at M = 5k

(d) New Task Accuracy with RSD at M = 1k (e) New Task Accuracy with RSD at M = 2k (f) New Task Accuracy with RSD at M = 5k

Figure 10. New Task Accuracy with or without RSD. Here presents the new task accuracy at,t at different task t during training. The
results of all experts with three memory buffer sizes are depicted. (a), (b) and (c): no RSD loss LRSD; (d), (e) and (f): with RSD loss LRSD.

(a) BOF at M = 1k (b) BOF at M = 2k (c) BOF at M = 5k

(d) BOF with RSD at M = 1k (e) BOF with RSD at M = 2k (f) BOF with RSD at M = 5k

Figure 11. Average BOF with or without RSD. Here presents the average BOF value (Eq. 5) at different task t during training. The
results of all experts with three memory buffer sizes are depicted. (a), (b) and (c): no RSD loss LRSD; (d), (e) and (f): with RSD loss LRSD.
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