
RELI11D: A Comprehensive Multimodal Human Motion Dataset and Method
—Supplementary Material

Ming Yan1,2,3∗ Yan Zhang1,3∗ Shuqiang Cai1,3 Shuqi Fan1,3 Xincheng Lin1,3 Yudi Dai1,3

Siqi Shen1,3† Chenglu Wen1,3 Lan Xu4 Yuexin Ma4 Cheng Wang1,3

1Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University
2National Institute for Data Science in Health and Medicine, Xiamen University
3Key Laboratory of Multimedia Trusted Perception and Efficient Computing,

Ministry of Education of China, School of Informatics, Xiamen University
4Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University

We would like to thank the reviewer for reading the sup-
plementary material.

In Appendix A, we describe the performance of state-
of-the-art methods after training from scratch based on the
RELI11D dataset. Then, We evaluate the generalization
ability of LEIR in Appendix B, add additional trajectory
legend in Appendix C, and perform an ablation study of
the baseline in Appendix D. Appendix E presents the cross-
dataset evaluation result of RELI11D.

For evaluation, we report Procrustes-Aligned mean per-
joint position error (PMPJPE), mean per-joint position er-
ror (MPJPE), percent correct keypoints (PCK) , Per Vertex
Error (PVE) and Acceleration Error (mm/s2) (ACCEL).
Except for PCK, which is a percentage indicator, error indi-
cators are all in millimeters.

We describe the details of the RELI11D dataset in Ap-
pendix F. And in Appendix G, we present the detail of the
multi-modal benchmark. We further describe the details of
the multi-modal baseline LEIR in Appendix H, and the de-
tails of different modality fusion strategies in Appendix I.

A. HPE results in RELI11D
To study the performance of multiple state-of-the-art HPE
methods on RELI11D. We train these methods from scratch
on RELI11D and compare their performance with their vari-
ations without retraining. The studied methods are: RGB-
based method (HybrIK [13], NIKI [12]), global-RGB-
based method (GLAMR [22]), Event-based method (Even-
tHPE [23]), LiDAR-based method (LiDARCap [14]), and
RGB+LiDAR-based method (ImmFusion [2] and Fusion-
Pose [4]). Please refer to Appendix G for their detailed de-
scriptions.

Their results are shown in Tab. 1. RELI11D dataset con-

Figure 1. Scenes in RELI11D dataset.

sists of many rapid and complex movements. All these
methods perform poorly on RELI11D without retraining
(results without the * mark). After retraining, the perfor-
mance of these methods improves a lot. For example, af-
ter retraining, HybrIK [13]’s MPJPE indicator results im-
prove by about 40%. The LiDAR-based method LiDAR-
Cap improves the index by 55% after retraining. These
demonstrate that RELI11D brings a significant challenge
to existing methods. After incorporating the knowledge of
challenging poses from RELI11D, the performance of these
methods improves. Moreover, we find that the proposed
baseline, LEIR, performs the best among all the methods
thanks to its ability to effectively utilize the RGB, LiDAR,
and Event modalities.
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Figure 2. Generalization experiment on unseen rapid motion with complicated hand depth ambiguity. Red circles mark areas with obvious
errors. The proposed baseline, LEIR, can accurately model the motions.

Input Modality Method ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑

RGB

HybrIK [13] 58.39 249.34 163.91 255.98 0.53
HybrIK* [13] 38.37 141.13 132.18 216.43 0.71

NIKI [12] 55.62 196.68 142.48 198.10 0.61
NIKI* [12] 43.28 120.36 112.63 165.71 0.73

Global
RGB

GLAMR [22] 47.83 202.66 179.59 346.35 0.65
GLAMR* [22] 44.15 163.90 155.84 277.13 0.70

Event EventHPE [23] - 193.70 115.72 224.59 0.52
EventHPE* [23] - 167.65 109.57 202.46 0.56

LiDAR LiDARCap [14] 54.42 144.51 106.20 176.98 0.67
LiDARCap* [14] 36.85 64.43 52.19 75.92 0.84

RGB+
LiDAR

ImmFusion [2] 49.19 175.00 159.62 187.31 0.67
ImmFusion* [2] 48.74 123.08 103.16 154.81 0.72
FusionPose [4] 44.89 136.15 110.19 166.94 0.75
FusionPose* [4] 42.29 97.58 74.51 106.31 0.81

LiDAR+
RGB+Event LEIR 23.90 49.19 40.87 61.86 0.92

Table 1. Retrain SOTA HPE methods in RELI11D. *Represents
this method is retrained from scratch based on RELI11D.

B. Generalization to Unseen Motions

In this work, we have collected a small set of fast motions
with complicated hand-depth ambiguity. Actors perform
various rapid and unpredictable hand movements, and such
motions are not seen in the RELI11D dataset. We use these
motions to test the generalization ability of the proposed
baseline and other state-of-the-art methods. The visualiza-
tion results are shown in Fig. 2. Most methods cannot ac-
curately reconstruct the details of these movements. It can
be seen from the results that there exist some in-precise pre-
dicted poses for NIKI [12], SMPler-X [1], HybriK [13], and
GLAMR [22]. LEIR can capture these motions accurately
thanks to its ability to use RGB, LiDAR point clouds, and
events streams together.

Strategy ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑
(a)ImmFusion-Based 34.94 95.27 70.24 141.67 0.79
(b)FusionPose-Based 35.27 59.50 51.08 72.10 0.88

(c)MMCA w/o Multi-TE 36.11 58.37 49.42 70.75 0.89
(d)MMCA w/o Multi-CA&TE 31.59 61.79 51.32 75.50 0.87

(e)MMCA with J & V 26.69 56.15 47.09 69.03 0.89

MMCA(Ours) 27.07 55.36 45.72 67.74 0.90

Table 2. Ablation study of LEIR using different fusion strategies.

C. Global Trajectory Prediction
As mentioned in Sec 5.5 of the main paper, the T-Error
measures the translation error is depicted in Tab.6. And
the additional predicted trajectory is plotted in Fig. 3. It
shows that the method based on two-dimensional repre-
sentation performs very poorly on global trajectory indica-
tors, which is also the bottleneck of the current global HPE
method based on monocular cameras. Incorporating the Li-
DAR point clouds with global trajectory information im-
proves the global motion indicators (low T-Error, similarity
between the curve and ground truth). This observation in-
dicates a promising trend of multimodal methods that fuse
global information.

D. LEIR Ablation Study
In this section, we perform the ablation study for the multi-
modal baseline, LEIR. As it is a multi-modal method, we
consider different ways to fuse different modalities. Fig. 4
depicts different modal fusion strategies, and Appendix I
describes them in details.

The experimental results of these methods are summa-
rized in Tab. 2. Our baseline uses MMCA to fuse different
modalities. It is observed that, in terms of ACCEL, MMCA
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Figure 3. Qualitative experiments on trajectory comparison in
different modalities. The lower right corner is the trajectory pre-
diction result of the three-modal baseline network, which is better
than other modalities. Unit: m.

Metrix Test
Train

LH26M RELI11D LH26M+RELI11D

ACCEL LH26M 45.88 130.92 51.30
RELI11D 54.42 36.85 29.54

MPJPE LH26M 80.08 237.45 94.73
RELI11D 144.51 64.43 55.20

PMPJPE LH26M 67.51 149.89 76.80
RELI11D 106.20 52.19 46.22

PVE LH26M 102.24 289.11 109.25
RELI11D 176.98 75.92 65.38

PCK0.3 LH26M 0.85 0.57 0.83
RELI11D 0.65 0.84 0.90

Table 3. Cross-dataset evaluation using LiDARCap [14].

performs slightly worse than MMCA + J&V, which requires
additional inputs. However, in terms of the MPJPE, PA-
MPJPE, PVE, and PCK0.3, MMCA performs better than
all the other strategies.

E. Cross Dataset Evaluation
In this section, we evaluate the quality of RELI11D through
cross-dataset evaluation. We have shown in the sub-
mitted paper that for single-modality input, the LiDAR-
based method (i.e., LiDARCap) performs better than other-
modality-based methods. Therefore, we use LiDARCap as
the studied method to evaluate the quality of RELI11D.

LiDARCap is trained based on the training sets of
LH26M (LiDARHuman26M [14]), RELI11D, and their
combination (LH26M+RELI11D). Then, it is evaluated

based on the test sets of LH26M and RELI11D, respec-
tively. The results are shown in Tab. 3.

As shown in Tab. 3, we can draw the following conclu-
sions. When LiDARCap is trained on one of the datasets,
it performs poorly on the other. In particular, when it is
trained on LH26M and tested on RELI11D, its performance
is worse than the other way around, which shows that the
daily activities included in LH26M are not enough for Li-
DARCap to estimate rapid and complex human motion pos-
tures. Furthermore, if LiDARCap is trained based on the
combination of the two datasets, its performance on both
datasets is significantly improved, and the error will be fur-
ther reduced by about 60%. This indicates a domain gap
between the LiDAR modality of the two datasets and that
the two datasets complement each other.

F. RELI11D Dataset
F.1. Scene Surface Reconstruction

To study the interaction between the human body and the
scene, we use Trimble X7, a high-precision scene scanning
device, to record the scene. Each scene contains more than
40 million colored point clouds. For ease of geometry op-
erations in 3D space, we convert all point clouds in dense
models into mesh using Poisson reconstruction [9, 10].
In Fig. 1, we show 6 reconstructed scenes, where human
motions were recorded.

F.2. Consolidated Optimization Stage

Coordinates and Notations. In this work, there are three
coordinates systems: 1) IMU coordinate {I}: its origin is at
the pelvis joint of a human, and X/Y/Z axis is pointing to
the right/upward/forward of the human. 2) LiDAR Coordi-
nate {L}: its origin is the center of the LiDAR, and X/Y/Z
axis is pointing to the right/forward/upward of the LiDAR.
3) World coordinate {W}: it is the scene’s coordinate. We
use the subscript k, k ∈ Z+ to represent frame index, and
the superscript, I or L or W , to specify the frame’s coordi-
nate system. For example, a LiDAR point clouds frame is
represented as PL = {PL

k , k ∈ Z+}
A 3D scene is represented as S. MW

k = (TW
k , θWk , β)

represents the kth frame of human motion in the world co-
ordinate system, where TW

k is the 3 dimensions translation
parameter, θWk is 24 × 3 dimensions pose parameters, β
is 10 dimensions shape parameter. The global translation
TW
k ∈ R3 represents the position of the SMPL model in the

three-dimensional space. The pose parameters θWk are de-
termined by the orientation of the pelvic joint RW

k ∈ R1×3

and the other 23 joints ∈ R23×3 relative to its parent Ro-
tation composition of level nodes. The constant parameter
β in R10 represents the shape of the human body. We use
the Skinned Multiplayer Linear (SMPL) [15] body model
Φ to obtain Vk, Fk = Φ(MW

k ), where the body vertices



Vk ∈ R6890×3 and the faces Fk ∈ R13690×3.

F.2.1 Optimization Loss Detail

We utilize contact aware loss Lcontact, smoothness loss
Lsmoo and geometry loss Lgeo to perform consolidated op-
timization of global poses and trajectories to obtain accurate
and scene-natural human motion annotation. We minimize
the overall loss which is defined as follows.

L = λcLcontact + λsLsmoo + λgLgeo (1)

where λc, λs, λg are loss coefficients. L is minimized with
a gradient descent algorithm [11].
Contact Aware Loss. The Lcontact term combines scene
constraints LsceneC and self-penetration constraints LselfC

to improve the quality of local human poses. The Lcontact

is expressed as:

Lcontact = λsceneCLsceneC + λselfCLselfC (2)

where λsceneC and λselfC are coefficients of these loss
terms.

LsceneC penalizes the vertices in the human SMPL mesh
that penetrates the scene mesh to ensure that the human
mesh remains collision-free with the 3D scene during op-
timization. For each vertex v, we find the closest vertex Sv

on the scene S. If the dot product between the distance vec-
tor from v to Sv and the normal vector at Sv is positive, it
indicates penetration. LsceneC is expressed as:

LsceneC =
1

k

k∑
i=1

∑
v∈Mi

max (0, (Sv − v) · nSv ) (3)

where nSv is the normalized normal vector of Sv .
LselfC penalizes the self-penetration in human motion

MW
k . Following [19], we divide the body mesh MW

k into
12 separate regions R including the torso, arms, hands, legs,
and head. The LselfC is expressed as:

LselfC =
1

k

k∑
i=1

∑
A∈R

∑
B∈RB ̸=A

∑
a∈A

max (0, (a− b) · nb)

(4)

where A and B are different regions of the body, and the
vertices a and b belong to regions A and B, respectively.
nb represents the normalized normal vector at b. Self-
penetration is determined by the positive dot product be-
tween vectors (a− b) and nb.
Smoothness Loss. We use Lsmoo to ensure the smoothness
of the global human motion spatially and temporally. The
Lsmoo is expressed as:

Lsmoo = λtransLtrans + λposesLposes + λjointsLjoints

(5)

where λtrans, λjoints and λposes are coefficients of these
loss terms. The trajectory smoothing term Ltrans smooths
human trajectories by minimizing the acceleration of the
pelvis. It is defined as:

Ltrans =
1

k − 2

k−2∑
i=1

∥Ti+2 − 2Ti+1 + Ti∥22 (6)

The body posture smoothing term Lposes maintains the
stability of the entire human body motion by minimizing
the axial angular velocity of each pelvis-related joint. It is
expressed as:

Lpose =
1

k − 2

k−2∑
i=1

∥θi+2 − θi+1 + θi∥22 (7)

The human joints smoothing term Ljoints promotes the
smoothness of the overall motion by minimizing the accel-
eration of all the SMPL joints except the root joint. It is
expressed as:

Ljts =
1

k − 2

k−2∑
i=1

∥J(M∗
i+2)−2J(M∗

i+1)+J(M∗
i )∥22 (8)

where the 23 pelvis-relative joints are regressed from the
motions by J(M∗

i ) ∈ R23×3.

Geometry Loss. The point cloud contains the geometry
information of human movement, they can be used to guide
the reconstructed SMPL model.

Registering the global human body SMPL and point
clouds in three-dimensional space may improve the quality
of reconstructed SMPL model. However, traditional regis-
tration methods such as Iterative Closest Point (ICP) are not
be suitable for aligning sparse and partial body points with
dense and complete SMPL grids. These methods usually
rely on large overlapping areas and similar point set densi-
ties to obtain accurate results.

For each estimated human mesh, following [5], we use
Hidden Point Removal (HPR) [8] to remove invisible mesh
vertices from the LiDAR perspective. We then use iterative
closest point (ICP) [18] to register the visible vertices to
P , which is the segmented human body point cloud. We
project the body mesh in LiDAR coordinates to select the
visible body vertices P ′. For each frame, we use Lgeo to
minimize the distance between body point P and vertex P ′

in Chamfer Distance. For each frame, the Lgeo is defined as
follows.

Lgeo =
1

k

k∑
i=1

∑
p̂∈Pi

1

|Pi|
min
p̂′∈P ′

i

∥p̂′ − p̂∥22. (9)



G. Details of Benchmarks

LiDAR-Based. We use three LiDAR-Based methods to
estimate human posture, and the results of all methods are
finally uniformly converted into SMPL models to calculate
indicators. First, we use P4Transformer [6], a Transformer-
based encoder specifically designed to process raw point
cloud videos in both spatial and temporal dimensions. It
reduces the amount of data that the Transformer needs to
process by proposing 4D convolution of points as a feature
extractor for spatiotemporal point clouds, thereby encoding
the local structure of spatiotemporality. We use the point
cloud features obtained using P4Transformer [6] and input
them into SMPL to obtain the predicted human pose.

Second, we use PCT [7], which exploits the inherent or-
der invariance of Transformer to avoid the need to explicitly
define the order of point cloud data. PCT [7] learns fea-
ture representation through attention mechanism. The input
point cloud is processed through the input embedding mod-
ule, and then the attention output of each attention layer is
concatenated along the feature dimension. A linear trans-
formation is then applied to obtain the final PCT result. We
use the same strategy as P4Transformer to input the results
into SMPL to obtain the predicted human pose.

Finally, we also conduct experiments using LiDAR-
Cap [14], which is designed for human pose prediction.
This method includes the extraction of point cloud features
and the solution of human posture, so we can directly in-
put the point cloud data provided in the data set and obtain
the predicted human posture. LiDARCap [14] consists of
three main components: a temporal encoder, an inverse mo-
tion solver, and an SMPL optimizer. The first step is to
process the point cloud through PointNet++[17] and extract
the 1024-dimensional global descriptor. Then, a temporal
encoder implemented using GRU is used to fuse the tem-
poral information in consecutive frames. Next, an MLP de-
coder is used to predict the positions of human joints based
on the fused features. The predicted joint positions are com-
bined with the 1024-dimensional features and fed into ST-
GCN, which computes the predicted pose parameters. Fi-
nally, joint positions are calculated in the SMPL optimizer,
resulting in predicted human body information, including
pose and other relevant details.

RGB-Based. We use three RGB-based methods to re-
construct human pose. First, we test HybrIK, It employs
a pre-trained HRNet network to extract 2048-dimensional
image features. This network learns the twist angle and
shape using a fully connected layer and generates heatmaps
through deconvolution layers for the regressive calculation
of 3D joint points. Subsequently, HybrIK utilizes Twist-
and-Swing decomposition along with a series of IK meth-
ods to predict final human poses. Second, we conduct ex-
periment with NIKI, which is a neural inverse kinematics

solution for estimating 3D human pose and shape. It uti-
lizes a bidirectional error decoupling IK algorithm, which is
based on INN. We employ a simplified version of HybrIK
to predict the parameters necessary for the bidirectional de-
coupling process. Subsequently, a single-layer NIKI is used
to determine the final outcome. It is important to note
that, for the HybrIK and NIKI methods, we mitigate er-
rors from inaccurate target detection by employing ground
truth bounding boxes as inputs for detection results. This
strategy enables us to concentrate exclusively on the preci-
sion in reconstructing the human body. The third method
we use is SMPLer-X. SMPLer-X is an extensive human
model trained with over 4.5 million data points gathered
from various sources, utilizing ViT-Huge as its core archi-
tecture. It has demonstrated strong performance across mul-
tiple benchmarks, prompting us to also conduct tests and
experiments using this model.

Event-Based. We use two Event-Based methods. First,
we test EventHPE [24]. After we aggregate the events into
image-like event frames, we select inter-frame events as one
packet and convert the event packets into 4-channel event
frames. We pad and resize the event frame to 256 × 256.
The event frames are then fed into FlowNet to infer optical
flow. And use the ShapeNet that comes with the original
article to receive event frames and optical flow to estimate
attitude changes and global translation changes. We use the
ground-truth pose and shape of the first frame as the starting
pose and shape to subsequently estimate the body pose and
shape at each time point. Second, in EventPointPose [3],
events are scaled to 346×260. Then we select time slice
K=4 to rasterize the event point set and sample 2048 points.
The sampled rasterized event point cloud is then processed
by the point converter backbone. Features output from the
backbone network are fed into a linear layer to predict the
2D locations of key points on the human body. We select
the ”Last Label” setting to generate labels.

LiDAR+RGB-Based. We use two methods in experiments
to predict human posture based on point clouds and RGB
images. The first is ImmFusion [2], which can be di-
vided into three main parts. In the first part, images and
point clouds are passed through the modal masking module.
This module randomly selects two modes, ensuring that the
model is robust and not biased towards a specific mode. In
the second part, PointNet++[17] is used to extract features
from the point cloud. This extraction process produces lo-
cal cluster features. Furthermore, MLP is adopted to obtain
1024-dimensional global features Lpc. For images, HrNet
is used to extract local mesh features, which are then con-
verted into global features using CNN. At the same time,
the local grid features are adjusted by MLP to match the
size of the local cluster features of the point cloud, gener-
ating features represented as Lim. The global features of
the two modalities are fused together using a small Trans-



former module, and the template’s vertices and joints are
also incorporated into this fusion process. Finally, the fused
global feature G is obtained. The last part combines the fea-
tures Lim, G and Lpc to obtain the fusion features through
the Fusion Transformer Module. Finally, the fused features
are input into SMPL to obtain human pose.

The second is FusionPose [4], which is a method that
combines 3D point clouds and 2D perspective RGB im-
ages for human pose prediction. In their proposed IPAFu-
sion approach, a fusion technique is introduced to effec-
tively combine the two modes. To extract features from
point clouds, they adopt PointNet, which provides global
feature representation. This global feature is then com-
bined with the original feature to obtain the final feature,
denoted as fp. This fusion operation can be expressed
as fp = LN(p + SelfAttention(p)), where LN rep-
resents layer normalization. Similarly, for image modal-
ity, HrNet is selected to extract features. This process
produces the final feature fi, which can be expressed as
fi = LN(i + SelfAttention(i)), where i represents the
initial image feature. In the image-to-point attention fusion
part, they utilize cross-attention to fuse two features. Point
cloud features fp act as queries, while image features fi act
as values and keys. Finally, the fused features are input into
GRU+MLP to obtain the predicted SMPL human pose.

Global RGB. We conduct experiments using two RGB-
based methods incorporating global translation. The first
method we explore is GLAMR. It begins by utilizing a
Generative Motion Infiller to fill in human motion, effec-
tively addressing issues of occlusion. Next, GLAMR em-
ploys a newly proposed global trajectory predictor to es-
timate future global trajectories. Finally, the method op-
timizes both the global trajectory of the human body and
camera parameters simultaneously, resulting in the genera-
tion of global motion in world coordinates. Similar to NIKI,
we utilize HybrIK as the motion prediction backbone for
GLAMR, achieving the final human action through several
stages.The second method, TRACE, is an end-to-end ap-
proach designed for inferring human actions within scenes.
This method utilizes temporal features extracted from im-
ages and optical flow maps predicted to learn multiple fea-
ture maps. These feature maps are then processed using
various head structures, enabling the completion of different
human pose estimation tasks. For our experiments, we use
inputs with a resolution of 1920x1080 and employ TRACE
to deduce the final human pose and global trajectory for ex-
perimental evaluation.

H. Details of LEIR

Our proposed multi-modality baseline, LEIR, focuses on
predicting the 3D pose of the human in world coordinate
system based on synchronized LiDAR point clouds, RGB

images and event streams. It contains feature extractors, the
temporal unified multimodal model (TUMM), and SMPL-
based inverse kinematics solver. The details of these three
modules are explained as follows.

H.1. Feature Extractor

To extract the corresponding feature for each RGB frame,
we first project the point cloud of the body onto the im-
age, which could determine the boundary of the point cloud
in this frame. Then, the bounding box that corresponds to
the human body can be obtained. We crop the image from
the bounding box and feed the image into a RGB encoder
(DINOv2 [16]). The feature for RGB modality, Rfi−N

is
obtained.

The point clouds features are obtained through feeding
the point clouds through the PointNet++ [17] network and
a GRU network.

To appropriately handle noise in event frames, we uti-
lize an average time sampling filter combined with adjacent
point denoising [20], which helps to enhance the visibility
of changes in human body movement across frames. After
noise reduction, we aggregate all the events within a frame
based on their pixel location and polarity to generate a new
event frame that resemble an image. The features of this
event frame, denoted as Efi−N

, are then extracted using DI-
NOv2 [16].

H.2. Temporal Unified Multimodal Model

The temporal unified multimodal model (TUMM) module
is proposed to fully utilize the 3D geometric information of
point clouds, the appearance details from RGB images and
temporal dynamics in event streams.

To fuse the features of point clouds and images, we
employ the multi-modal cross attention unit (MMCA),
which enables effective fusion of information from differ-
ent modalities by leveraging a cross-attention module.

LEIR is a flexible method which can use different com-
binations of modalities as input. For single-modality in-
put, the TUMM module consists only one step. In this
step, the extracted input features are fed into the MMCA
unit whose cross-attention module is replaced with a self-
attention module. For two-modality input, the TUMM mod-
ule consists one step. In this step, features from two modal-
ities are fed into the MMCA unit.

For three-modality input, the TUMM modules contains
two steps. In the first step, the LiDAR point clouds and
the RGB images are fused using the MMCA, LiDAR point
clouds and the event frames are fused using MMCA as well.
In the second step, the features obtained from the first step
are further fused using MMCA, which allows a comprehen-
sive integration of the features from different modalities.
For the second step of TUMM, the 2D (right) branch of
MMCA is replaced by a 3D branch.
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Figure 4. Different strategies of fusing multiple modalities for LEIR. (a) Fusion Strategy of ImmFusion [2]. (b) Fusion Strategy
of FusionPose [4] (c) MMCA without Multi-Transformer-Encoder (d) MMCA without Multi-Cross-Attention. (e) MMCA + Joints and
Vertices.

H.3. SMPL-based inverse kinematics solver

The fused features Fmmfusion obtained from TUMM, are
used in this solver, which consists of three branches. In
the first branch, the extracted features are inputted into a
3D regressor, which is responsible for estimating the 3D
joints and camera intrinsic parameters. To guide the training
and ensure accurate estimation, three loss functions are em-
ployed in this branch. The first loss function, Lps2d, serves
as a projection loss, which ensures that the 2D appearance
of the SMPL model aligns with the human body in pixel
coordinates. By minimizing the discrepancy between the

projected 2D model and the observed human body in the
image, this loss function aids in achieving accurate align-
ment and pixel-level correspondence. This loss is defined
as:

Lps2d = Lshape2d + Lpose2d (10)

Lps2d consists two terms that specifically target the pose
and shape parameters of the SMPL model. The shape
term β is the 10-dimensional shape parameter of the SMPL
model. The pose term, θ, is a N × 3 × 3 rotation matrix,
where N is 24 and represents the number of joint points.
Lshape2d and Lpose2d are defined as follows.



Lshape2d =
1

10

10∑
i=1

(βpredi − βgti)
2 (11)

Lpose2d =
1

N × 3× 3

N∑
i=1

3∑
j=1

3∑
k=1

(θpredijk
− θgtijk)

2

(12)
where βpred and βgt are the predicted and ground-truth
shapes, respectively. θpred and θgt are the predicted and
ground-truth poses, respectively.

The second loss function, Lkp2d, is used to constrain
the 2D joints of the human body. By comparing the esti-
mated joints KP2dpred with the ground truth annotations
KP2dgt, this loss function encourages the regressor to ac-
curately capture the spatial relationships and positions of
the joints in the 2D image space.

Lkp2d =
1

N × 2

N∑
i=1

2∑
j=1

(KP2dpredij−KP2dgtij )
2 (13)

The 3D joints predicted by the 3D regressor are con-
strained by the loss Lkp3d, which ensures that the regressor
accurately captures the spatial relationships and positions of
the joints by comparing predicted joints KP3dpred with the
ground truth annotations KP3dgt.

Lkp3d =
1

N × 3

N∑
i=1

3∑
j=1

(KP3dpredij
−KP3dgtij )

2 (14)

In the second branch of the solver, the extracted features
are fed into a RNN network, which is designed to gener-
ate the 3D human joints in the world coordinate system. To
guide the training process and ensure appropriate joint pre-
diction, we employ LW

joint to encourage alignment between
the predicted 3D joints Jtpred and the ground truth labels
Jtgt.

LW
joint =

1

N × 3

N∑
i=1

3∑
j=1

(Jtpredij
− Jtgtij )

2 (15)

The third branch of our approach employs ST-GCN
[21], where the fused features from the previous branches
are utilized to predict the 3D human joints. To ensure accu-
rate joint orientation, we apply Lsmpl

joint to encourage align-
ment between the predicted joint orientations Jtpred and the
ground truth orientations Jtgt.

Lsmpl
joint =

1

N × 3

N∑
i=1

3∑
j=1

(Jtsmpl
predij

− Jtsmpl
gtij )2 (16)

The outputs of this branch, which represent the predicted
3D joints, are then passed through a SMPL optimizer that
converts the joint positions into human poses in axis-angle
form. And the loss Lsmpl

pose is employed to enforce alignment
between predicted pose θsmpl

pred with the ground truth poses
θsmpl
gt .

Lsmpl
pose =

1

N × 3× 3

N∑
i=1

3∑
j=1

3∑
k=1

(θsmpl
predijk

− θsmpl
gtijk

)2 (17)

All the aforementioned losses play a crucial role in our
method to achieve accurate estimates of human pose.

I. Fusion Strategies

(a)ImmFusion-Based Strategy. For this strategy [2], as
shown in (a) of Fig. 4, after the initial cross-attention opera-
tion that fuses the two modalities, it concatenates the fused
features with the features from the two modalities. Subse-
quently, a series of self-attention and MLP layers are ap-
plied to obtain the final fusion features.

(b)FusionPose-Based Strategy. The FusionPose [4] strat-
egy is depicted in Fig. 4 (b). After the initial cross-attention
operation, the fused features are directly combined with the
point cloud features. To further refine the fusion, it em-
ploys Feed-Forward network layers and residual structures,
which could help in enhancing the fusion features by incor-
porating the point cloud information while preserving the
original features from the cross-attention operation.

(c)MMCA w/o Multi-TE Strategy. Fig. 4 (c) illustrates a
modified MMCA unit. We change the Transformer Encoder
in MMCA from multiple layers to just one layer. Through
this experimentation, we can determine whether the origi-
nal RELI method’s multi-layer transformer encoder stack-
ing contributes to the feature extraction and fusion process.

(d)MMCA w/o Multi-CA&TE Strategy. As it is depicted
in Fig. 4 (d), cross-attention is removed from MMCA. This
strategy directly adds the point cloud and image features,
and they are further fused with the initial features of the
point cloud and image, which allows for the integration of
the initial fusion results with the original features.

(e)MMCA + J&V (Joints&Vertices) Strategy. This strat-
egy is depicted in Fig. 4 (e), which takes joints and vertices
as additional inputs. It fuses other modalities with cross
attention. During training, this strategy uses ground-truth
joints and vertices as the additional input. During testing,
this strategy uses the joints and vertices predicted by Li-
DARCap as inputs.
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