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1. Overview
This supplementary material provides additional details re-
garding our architecture, implementation settings, and ad-
ditional experimental results, including:
• Detailed Network Architecture (see Section. 2).
• Further Implementation Details (see Section. 3).
• More Ablation Studies (see Section. 4).

2. Detailed Network Architecture
Real Encoder The real encoder (R) proposed in the main
paper is a pre-trained Arcface network [7]. We freeze the
majority of the layers in our pre-trained face recognition
model because we believe that these layers have already ac-
quired knowledge about real faces. However, we keep the
last block of layers unfrozen so that we can utilize this part
of the model for fine-tuning or further training. During the
training process, we employ the network as a teacher model
to distill the knowledge of real faces to the student model
(i.e., a binary classification model). This knowledge trans-
fer is achieved through feature map alignment (see Figure. 2
in the main paper). We aim to encourage the student model
to generate feature maps that are near to those produced by
the real encoder when presented with real face inputs. The
effectiveness of this strategy has been verified through ex-
periments, as detailed in Table. 6 of the manuscript. The
details of the real encoder are shown in Figure. 1.

3. Further Implementation Details
Face-swapping Dataset According to the Section. 2 in
our main paper, deepfake can be typically classified into
face-swapping forgery (e.g., face-replacement and face-
reenactment) and entire facial image synthesis (e.g., GAN
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Figure 1. Teacher Real Encoder architecture, an Arcface network
with 101 layers. The “BasicBlock” is a typical residual block in
the ResNet [11]. “BN” is the short for Batch Normalization.

and diffusion-generated images). In this work, we mainly
focus on the detection of the face-swapping forgery and
also show the potential to detect entire image synthesis. We
adopt several widely used face-swapping deepfake datasets
in the DeepfakeBench [27]: FF++ [19], DFD [5], CDF [16],
DFDCP [8], and DFDC [9].
• FF++ [19] is a well-known database used for deepfake

detection. The real videos in this dataset are almost in-
terviews or speeches by a single person. FF++ utilizes
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Ablation DFD CelebDF-v1 CelebDF-v2 DFDCP DFDC Avg.

AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓
wo AdT 0.884 | 0.985 | 19.8 0.860 | 0.907 | 21.7 0.824 | 0.893 | 25.7 0.800 | 0.890 | 27.3 0.740 | 0.764 | 32.7 0.814 | 0.888 | 25.4
wo AFT 0.869 | 0.982 | 21.4 0.847 | 0.904 | 22.1 0.809 | 0.884 | 26.6 0.815 | 0.898 | 26.2 0.744 | 0.762 | 32.6 0.817 | 0.886 | 25.8
wo CT 0.881 | 0.984 | 19.9 0.847 | 0.898 | 23.1 0.793 | 0.877 | 28.4 0.793 | 0.878 | 28.0 0.734 | 0.756 | 33.5 0.810 | 0.879 | 26.6

Ours 0.880 | 0.984 | 20.0 0.867 | 0.922 | 21.9 0.830 | 0.904 | 25.9 0.815 | 0.893 | 26.9 0.736 | 0.760 | 33.0 0.825 | 0.893 | 25.5

Table 1. Detailed performance metrics of different ablation studies. The values represent AUC, AP, and EER for each method across
various datasets. The average performance (Avg.) across all datasets is also reported. The best results are highlighted in bold.

Encoder Architecture DFD CDF-v1 CDF-v2 DFDCP DFDC Avg.

AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓ AUC ↑ | AP ↑ | EER ↓
Xception 0.888 | 0.986 | 20.3 0.823 | 0.884 | 23.5 0.806 | 0.882 | 27.1 0.796 | 0.887 | 28.5 0.729 | 0.752 | 34.0 0.808 | 0.878 | 26.7

EfficientNet-B1 0.870 | 0.983 | 21.4 0.821 | 0.885 | 25.1 0.809 | 0.882 | 27.2 0.789 | 0.881 | 28.6 0.733 | 0.756 | 33.5 0.804 | 0.877 | 27.2
EfficientNet-B4 0.880 | 0.984 | 20.0 0.867 | 0.922 | 21.9 0.830 | 0.904 | 25.9 0.815 | 0.893 | 26.9 0.736 | 0.760 | 33.0 0.825 | 0.893 | 25.5
EfficientNet-B5 0.877 | 0.984 | 21.0 0.848 | 0.919 | 22.0 0.833 | 0.898 | 25.7 0.812 | 0.892 | 27.1 0.748 | 0.772 | 32.4 0.824 | 0.893 | 25.6

Table 2. Performance evaluation of different encoder architectures. All models are trained on the FF++ c23 dataset and evaluated across
various other datasets with metrics presented in the order of AUC | AP | EER (the frame-level). The average performance (Avg.) across all
datasets is also reported. The best results are highlighted in bold.

four different forgery technologies (i.e., DF [6], F2F [24],
FS [10], and NT [25]) to separately generate fake videos
from the same 1000 pristine videos. We adopt the official
data splits and use 740 videos for training, 140 for val-
idation, and 140 for testing. To evaluate the generaliza-
tion ability, we adopt the evaluation strategy by training
models on the FF++ and testing them on other previously
unseen datasets. Note that FF++ has three versions of
datasets with different levels of compression. Following
previous work [1, 21, 26], we adopt the c23 (light com-
pression/high quality) version for training.

• DFD [5] is a database released by Google, which contains
363 source videos from 28 actors and about 3,000 forged
videos. This dataset includes different scenes and char-
acters, more consistent with the face-swapping in the real
and complex scenes. Since this dataset does not have the
official split settings of the training and testing, we follow
DeepfakeBench [27] to use the whole DFD dataset for
evaluation. We use the c23 version for the DFD dataset
for testing.

• CDF [16] is a large-scale challenging deepfake video
database toward celebrities that is generated using the
improved synthesis process of DeepFake algorithm [6].
Compared to the DeepFake algorithm applied in the FF++
(FF-DF), CDF utilizes more post-processing technologies
to eliminate the visual artifacts, such as the blur, blend-
ing boundary, etc. This dataset has two versions with
similar data sources but different data quantities. CDF-
v1 contains 408 real videos and 795 synthesized videos,
while CDF-v2 has 5639 fake videos. CDF widely serves
as a benchmark for evaluating the generalization perfor-
mance. In this work, we train our model on FF++ and
evaluate it on both CDF-v1 and CDF-v2.

• DFDCP [8] is the preview version of DFDC [9] that is

released with the same-named challenge which is held
by several corporations and academics to build innovative
new technologies for deepfake detection. DFDC dataset
contains a lot of disturbed videos, e.g., noise, down-
sampling, and compression. So far, DFDC is considered
as the most challenging deepfake dataset for generaliza-
tion evaluation. In this work, we train our model on FF++
and evaluate it on both DFDCP and DFDC.

Entire Image Synthesis Dataset In this work, we adopt
four typical entire image synthesis datasets generated by
GANs or Diffusion models: StarGAN [3], DDPM [12],
DDIM [22], and Stable Diffusion [18]. In this work, we
train our model on FF++ c23 and use it for the detection
of these entire image synthesis datasets (see Table. 4 in the
manuscript). This setting could be challenging because both
the data source and the manipulation artifacts are relatively
distinct. For example, face-swapping forgery methods can
produce blending artifacts, but the entire image synthesis
does not. Here, we introduce the four entire image synthe-
sis technologies:

• StarGAN [3] is a typical GAN (generative adversarial
network) model designed for image-to-image translations
across multiple domains with diverse attributes. In this
work, we use the dataset from link1.

• DDPM (Denoising Diffusion Probabilistic Models) [12]
is one of the most classical diffusion generative models
that creates images by gradually denoising random noise.
We use the code of DiffusionPipeline from Diffusers2. We
load the pre-trained model from the celeba hq 256. We
perform the image-to-image translation using the original

1https://github.com/peterwang512/CNNDetection.
2https://github.com/huggingface/diffusers.

https://github.com/peterwang512/CNNDetection
https://github.com/huggingface/diffusers
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Figure 2. Examples of the entire synthesis images using the gen-
erative models. “SD” is the short for stable diffusion [18].
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Figure 3. Exploration of loss terms: Binary loss (λ1), Domain loss
(λ2), Distillation loss (λ3).

images from CelebA [17].
• DDIM (Denoising Diffusion Implicit Models) [22] offers

a non-Markovian variant of diffusion models with faster
sampling times. We use the code of DDIMScheduler
from Diffusers. We load the pre-trained model from the
celeba hq 256. We perform the image-to-image transla-
tion using the original images from CelebA [17].

• Stable Diffusion [18] is a recent state-of-the-art diffu-
sion generative model that generates high-quality im-
ages based on textual descriptions. We use the code
of StableDiffusionPipeline from Diffusers. We load the
pre-trained model from the celeba hq 256. We perform
the image-to-image translation using the original images
from CelebA [17].

Pre-processing Details In the pre-processing phase,
the face extraction and alignment are conducted using
DLIB [20], and the resulting aligned faces are resized to di-
mensions of 256 × 256 for both training and testing. All
faces for training and testing are cropped with the mar-
gin rate fixed at 1.3 (consistent with DeepfakeBench [27]).
Also, 32 frames are sampled with the same interval for each
video for both the training and testing.

Training Details In the training phase, the Adam opti-
mizer [13] is employed with a fixed learning rate of 0.0002.
We collect and organize videos along with their correspond-
ing fake counterparts into groups. Specifically, we utilize
the FF++ dataset for training, which encompasses four dis-
tinct forgery methods for each real video. Consequently, for
every real video, we have one real image paired with four
fake images, resulting in a single group. In each training
batch, we assemble four such groups. Our chosen batch
size is set to 8, leading to a total of 40 images within one
mini-batch. Furthermore, some widely used data augmen-
tations, including image compression, horizontal flip, and
down-sampling, are applied to the training data.

4. More Ablation Studies
In this section, we present supplementary ablation studies to
provide a more comprehensive evaluation of our approach.

Further ablation for the within-domain augmentation
In our manuscript, we conduct ablation studies to explore
the effectiveness of within-domain augmentation (WD).
There are three key transformations within the WD, i.e.,
Centrifugal Transformation (CT), Affine Transformation
(AfT), and Additive Transformation (AdT). Here, we fur-
ther explore the effectiveness of these three main trans-
formations toward the generalization performance of our
model. To assess the individual contributions of these trans-
formations, we conduct experiments where we remove each
of them from the WD. Note that we do not employ the CD
in these experiments. Results in Table. 1 show that each
component of WD contributes positively to the final results.
Removing each of them could produce a lower performance
on average, which indicates all three transformations within
the WD are important for general deepfake detection.

Exploration of the architecture for forgery encoders In
our manuscript, we employ the EfficientNet-B4 as the back-
bone architecture for the forgery encoders. Here, we con-
duct additional investigations to explore other backbone ar-
chitectures. We apply other three variants: Xception [4],
EfficientNet-B1/B5 [23]. The results, presented in Table. 2,
indicate that EfficientNet-B4 achieves the overall best re-
sults on average, making it the optimal choice for our



Method Testing Datasets

CDF-v1 CDF-v2 DFDC

FWA [15] 0.790 0.668 0.613
Face X-ray [14] 0.709 0.679 0.633

OST [2] - 0.748 -
SLADD [1] - 0.797 -
SBI* [21] 0.872 0.827 0.720

Ours 0.867 0.830 0.736

Table 3. Comparison with other augmentation-based methods
using the frame-level AUC metric. All methods are trained
on FF++ c23. The results are generally cited from the bench-
mark [27]. * donates our reproduction with the official code to
obtain the frame-level AUC results.

forgery encoders. Thus, we select EfficientNet-B4 as the
default architecture for our forgery encoders.

Comparison with other augmentation-based methods.
We conduct a comparative experiment with other ap-
proaches that are based on data augmentation. We utilize
the frame-level AUC for comparison. Notably, SBI initially
reported video-level results in the original paper. We repro-
duce the results of SBI [21] using the official code3 to obtain
the frame-level AUC results. The results for other detectors
are directly sourced from DeepfakeBench. As indicated in
Table. 3, we observe that our method consistently demon-
strates superior generalization across these benchmarks, un-
derscoring the effectiveness of our proposed method.

Model performance against hyper-parameters’ varia-
tions. We adjust each hyper-parameter within the final ob-
jective function in a wide range. Fig. 3 shows there are
slight performance fluctuations w.r.t. each parameter.
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