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Figure 1. Comparison of the common 3D cubic convolution and
our proposed distance-aware spherical convolution.
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Table 1. Definition of the seven metrics used in the main text.

1. Distance-Aware Spherical Convolution
Fig. 1 illustrates the comparison of our distance-aware
spherical convolution (DASC) and the 3D convolution. We
observe that the d-relevant DASC involves a higher number
of valid points with more balanced distribution.

2. Metric
On KITTI benchmark, we employ RMSE, MAE, iRMSE,
and iMAE for evaluation [7, 12, 13, 16]. On NYUv2,
TOFDC, and SUN RGBD datasets, RMSE, REL, and δi
(i = 1, 2, 3) are selected for testing [8, 10, 14, 15].

For simplicity, let x and y denote the predicted depth and
ground truth depth, respectively. Tab. 1 defines the metrics.

3. Loss Function
The total loss function Ltotal consists of three terms, i.e.,
the front-view Lf , top-view Lt, and side-view Ls. The
ground truths of the front, top, and side views are ob-
tained by projecting the annotated point clouds. Following
[5, 7, 16], we adopt L1 and L2 joint loss functions to denote

Lf , Lt, and Ls, i.e., Lf/Lt/Ls = L1+L2. As a result, the
total loss function Ltotal is defined as:

Ltotal = Lf + αLt + βLs, (1)

where α and β are conducted to balance the three terms.
Empirically, we set α and β to 0.6 and 0.2, respectively.

4. Implementation Detail
We implement TPVD on Pytorch with four 3090 GPUs. We
train it for 50 epochs with Adam [4] optimizer. The ini-
tial learning rate is 5 × 10−4 for the first 30 epochs and
is reduced to half for every 10 epochs. Following [5, 12],
the stochastic depth strategy [2] is used for better training.
Also, we employ color jitter and random horizontal flip for
data augmentation. The batch size is 3 for each GPU.

5. TOFDC
5.1. Motivation

For depth completion task, the commonly used datasets are
KITTI [11] and NYUv2 [9]. Tab. 2 lists the detailed char-
acteristics. KITTI uses LiDAR to collect outdoor scenes,
while NYUv2 employs Kinect with time-of-flight (TOF) to
capture indoor scenes. However, both LiDAR and Kinect
are bulky and inconvenient, especially for ordinary con-
sumers in daily life. Recently, TOF depth sensors have be-
come more common on edge devices (e.g., mobile phones),
as depth information is vital for human-computer interac-
tion, such as virtual reality and augmented reality. There-
fore, it is important and worthwhile to create a new depth
completion dataset on consumer-level edge devices.

5.2. Data Collection

Acquisition System. As illustrated in Fig. 5 (left), the ac-
quisition system consists of the Huawei P30 Pro and He-
lios, which capture color image and raw depth, and ground
truth depth, respectively. The color camera of P30 produces
3648×2736 color images using a 40 megapixel Quad Bayer
RYYB sensor, while the TOF camera outputs 240 × 180
raw depth maps. The industrial-level Helios TOF camera
generates higher-resolution depth. Their depth acquisition
principle is the same, ensuring consistent depth values.
Data Processing. We calibrate the RGB-D system of the
P30 with the Helios TOF camera. We align them on the
640 × 480 color image coordinate using the intrinsic and
extrinsic parameters. The color images and Helios depth
maps are cropped to 512 × 384, while the P30 depth maps
to 192 × 144. Then we conduct nearest interpolation to



Dataset Outdoor Indoor Sensor Edge Device Train Test Resolution Real-world

KITTI [11] ✓ × LiDAR × 86,898 1,000 1216 ∗ 352 ✓
NYUv2 [9] × ✓ Kinect TOF × 47,584 654 304 ∗ 228 ×
TOFDC ✓ ✓ Phone TOF ✓ 10,000 560 512 ∗ 384 ✓

Table 2. Dataset comparison. Note that these characteristics are calculated according to the depth completion task.
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Figure 2. Density-probability comparison of raw depth maps.

upsample the P30 depth maps to 512× 384. For the Helios
depth maps, there still exist some depth holes caused by
environment and object materials (e.g., transparent glass).
We use the colorization technique (Levin et. al) to fill the
holes. Fig. 5 (right) shows the visual result.

Fig. 2 provides the corresponding statistical support. It
reveals that the depth density of NYUv2 varies mainly from
60% to 80%, whereas that of TOFDC is highly concentrated
between 95% and 100%.

As reported in Tab. 2, we collect the new depth com-
pletion dataset TOFDC. It consists of indoor and outdoor
scenes, including texture, flower, light, video, and open
space in Fig. 3. For the depth completion task, we take
the raw depth captured by the P30 TOF lens as input, which
is different from NYUv2 where the input depth is sampled
from the ground truths.

5.3. Cross-Dataset Evaluation

To validate the generalization on indoor scenes [14], we
train TPVD on NYUv2 and test it on SUN RGBD. Com-
paring Tab. 3-Kinect with Tab. 3, the errors of all meth-
ods increase and the accuracy decreases due to different
RGB-D sensors. When comparing Tab. 3-Xtion with Tab.
3, since the data is from different Xtion devices, we dis-
cover that the performance drops by large margins. How-
ever, Tab. 3 reports that our TPVD still achieves the lowest
errors and the highest accuracy under Kinect V1 and Xtion
splits. For example, under Xtion split, the RMSE of TPVD
is 9 mm superior to those of the second best NLSPN [7]
and PointDC [14]. These facts evidence the powerful cross-
dataset generalization ability of our TPVD.

Method RMSE (m) ↓ REL ↓ δ1 ↑ δ2 ↑ δ3 ↑

Collected by Kinect V1

CSPN [1] 0.729 0.504 69.1 77.8 84.0
NLSPN [7] 0.093 0.020 98.9 99.6 99.7
CostDCNet [3] 0.119 0.033 98.1 99.6 99.7
GraphCSPN [6] 0.094 0.023 98.8 99.6 99.7
PointDC [14] 0.092 0.023 98.9 99.6 99.8
TPVD (ours) 0.087 0.022 99.1 99.7 99.8

Collected by Xtion

CSPN [1] 0.490 0.179 84.5 91.5 95.1
NLSPN [7] 0.128 0.015 99.0 99.7 99.9
CostDCNet [3] 0.207 0.028 97.8 99.1 99.5
GraphCSPN [6] 0.131 0.017 99.0 99.7 99.9
PointDC [14] 0.128 0.016 99.1 99.7 99.9
TPVD (ours) 0.119 0.014 99.3 99.8 99.9

Table 3. Cross-dataset evaluation on SUN RGBD benchmark.
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Figure 3. TOFDC examples in different scenarios.
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