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Method Backbone | Mean | Gain
HSG 15.6 -

HSG+PA ResNet 14.8 | +0.8
HSG+SPA 145 | +1.1
HSG 11.1 -

HSG+PA Vit-Base 9.8 +1.3
HSG+SPA 8.9 +2.2

Table 1. Ablation experiments of Soft-weighted parameter align-
ment for the CIFAR10-to-CIFAR10C task. ‘HSG’ is the proposed
High-quality Supervision Generator. ‘PA’ is parameter alignment
in an average manner, and ‘SPA’ is the proposed Soft-weighted
Parameter Alignment.

1. Ablation Studies

We verify the impact of the soft-weighted parameters align-
ment. Instead of calibrating the parameters using the source
pre-trained model randomly, we attempt to calibrate the
model using the soft-weighted parameters alignment, and
the influence of the soft weights is shown in Table 1. The
results demonstrate that average parameter alignment per-
forms poorly many times compared with the soft-weighted
alignment module. The latter layers in a network are much
more sensitive to label noise, while their former counter-
parts are quite robust [1]. The weights control the similarity
of the adapted model to the source one with the depth of
layers, allowing noise-robust former layers to be adjusted
more and noise-sensitive latter ones to be adjusted less.

We further conduct ablation experiments with the same
supervision signals to prove the effectiveness of the pro-
posed framework in Table 2. For the convenience of ex-
pression, ‘SST’ represents the label selection with self-
adaptive thresholds, and the unreliable part is discarded di-
rectly. Then, such a module is combined with label calibra-
tion (Calibration with Source Knowledge, CSK) and diver-
sity reweighting (Diversity with Prior Distribution, DPD),
respectively. Ultimately, These three will form a versa-
tile supervisory signal generator. SPA is the Soft-weighted
Parameters Alignment module. the pseudo-label after se-
lection and calibration strategies can effectively suppress
noisy labels and improve performance. By contrast, diver-
sity with prior distribution is vital for the model. Such mod-
ules work together to build high-quality supervision signals.
Moreover, parameter alignment improves by nearly 1% in
ImageNet-to-ImageNet-C, which indicates a large amount
of generalization knowledge in the source model.

The results in Table 3 represent that the performance of
CoTTA slightly degrades when only updating normaliza-
tion parameters, mainly because CoTTA does not alleviate
the effects of noisy signals, and ignores the diversity of su-
pervision signals. Our method significantly improves such
problems, which has higher computational efficiency.

(b)

Figure 1. Results with different hyper-parameters in terms of clas-
sification error rate (%) for the standard CIFAR10-to-CIFAR10C.
a) A1 with ViT-base model; b) A\; with ResNet model.

2. Parameters Analysis

We evaluate different hyper-parameters in terms of clas-
sification error rate (%) for the standard CIFAR10-to-
CIFAR10C. We explored how the model varies with the
hyper-parameter A\;. The results shown in Figure 1 repre-
sent that our method is not sensitive to \; at range [0.01, 1].
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Table 2. Ablation experiments of the framework in standard ImageNet-to-ImageNet-C dataset. ‘SST’ represents the label selection with
self-adaptive thresholds, and the unreliable part is discarded directly. ‘CSK’ is the Calibration with Source Knowledge, and ‘DPD’ is the
Diversity with Prior Distribution module. SPA is the Soft-weighted Parameters Alignment.
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Table 3. Classification error rate (%) for the standard CIFAR10-to-CIFAR10C continual test-time adaptation task. All results are evaluated
with the largest corruption severity level 5 in an online fashion.



	. Ablation Studies
	. Parameters Analysis

