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1. Gradient Distillation.
The gradient information often shows how the model re-
sponds to changes according to inputs. We propose to force
the gradient consistency between teacher and student using
the derivative w.r.t the visual and text embeddings. By this
means, the student could better understand how the output
should change according to the input. This helps the student
behave more similarly to the teacher.

Given the image-to-text contrastive loss LI→T , the vi-
sual embedding vk is the anchor, and the text embeddings
{sb}|B|

b=1 are contrastive samples. The gradient w.r.t visual
and text embeddings are calculated as ∂LI→T

∂vk
and ∂LI→T

∂sb
:

∂LI→T

∂vk
=

|B|∑
b=1

(pk[b]− 1[k=b])sb/τ, (1)

∂LI→T

∂sb
= (pk[b]− 1[k=b])vk/τ. (2)

Here, pk is the contrastive distribution from vk to {sb}|B|
b=1.

1 is an indicator function that equals to 1 when k = b
else returns 0. Similarly, the gradient of text-to-image con-
trastive loss LT→I w.r.t the text embedding sk and visual
embeddings {vb}|B|

b=1 are calculated as ∂LI→T

∂sk
and ∂LI→T

∂vb
:

∂LT→I

∂sk
=

|B|∑
b=1

(qk[b]− 1[k=b])vb/τ, (3)

∂LT→I

∂vb
= (qk[b]− 1[k=b])sk/τ. (4)

As a result, the gradient of CLIP contrastive loss LCLIP

w.r.t each visual embedding vk and text embedding sk are
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formulated as:

∂LCLIP

∂vk
=

1

2
(
∂LI→T

∂vk
+

∂LT→I

∂vk
), (5)

∂LCLIP

∂sk
=

1

2
(
∂LI→T

∂sk
+

∂LT→I

∂sk
). (6)

We align the gradient information w.r.t each visual and text
embedding between teacher and student via MSE loss:

LGD =
1

|B|

|B|∑
k=1

(

∥∥∥∥∂LT
CLIP

∂vTk
− ∂LS

CLIP

∂vSk

∥∥∥∥2
2

+

∥∥∥∥∂LT
CLIP

∂sTk
− ∂LS

CLIP

∂sSk

∥∥∥∥2
2

). (7)

2. Theoretical Insights of Interactive Con-
trastive Learning: Proof of Maximizing the
Lower bound of the Mutual Information

Given the student image embedding vSk as the anchor
and teacher text embeddings {sTb }Bb=1 as contrastive ones,
where B = |B| is the batch size, the (vSk , s

T
k ) is a posi-

tive pair and {(vSk , sTb )}Bb=1,b ̸=k are negative pairs. We in-
troduce the joint distribution µ(vS, sT) and the product of
marginals µ(vS)µ(sT) . We utilize a distribution η with an
indicator variable C to represent whether a pair (vS, sT)
is drawn from the joint distribution (C = 1) or product of
marginals (C = 0):

η(vS, sT|C = 1) = µ(vS, sT), (8)

η(vS, sT|C = 0) = µ(vS)µ(sT). (9)

Here, C = 1 represents the positive pair (vSk , s
T
k ) while

C = 0 represents a negative pair from {(vSk , sTb )}Bb=1,b̸=k

, i.e. (vSk , s
T
k ) ∼ µ(vS, sT), {(vSk , sTb )}Bb=1,b ̸=k ∼

µ(vS)µ(sT). For interactive contrastive learning, we of-
ten have 1 positive pair for every N negative pairs, where
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N = B − 1. Therefore, the prior probabilities of the latent
variable C are formulated as:

η(C = 1) =
1

1 +N
, η(C = 0) =

N

1 +N
. (10)

By using Bayes’ theorem, we can compute the class pos-
terior of the pair (vS, sT) belonging to the positive case
(C = 1) as :

η(C = 1|vS, sT) (11)

=
η(vS, sT|C = 1)η(C = 1)

η(vS, sT|C = 1)η(C = 1) + η(vS, sT|C = 0)η(C = 0)
(12)

=
µ(vS, sT)

µ(vS, sT) +Nµ(vS)µ(sT)
. (13)

The log class posterior can be further expressed as follows:

log η(C = 1|vS, sT) (14)

= log
µ(vS, sT)

µ(vS, sT) +Nµ(vS)µ(sT)
(15)

= − log(1 +N
µ(vS)µ(sT)

µ(vS, sT)
) (16)

≤ − log(N) + log
µ(vS, sT)

µ(vS)µ(sT)
. (17)

The expectations of log class posterior log η(C =
1|vS, sT) can be connected to mutual information:

Eη(vS,sT|C=1) log η(C = 1|vS, sT) (18)

≤ − log(N) + Eµ(vS,sT) log
µ(vS, sT)

µ(vS)µ(sT)
(19)

= − log(N) + I(vS, sT), (20)

where I(vS, sT) denotes mutual information between vS

and sT. Essentially, the ICL loss LICL I→T is negative log
class posterior of the positive pair:

LICL I→T = − log η(C = 1|vS, sT). (21)

Therefore, we can connect LICL I→T to the mutual infor-
mation I(vS, sT) as follows:

Eη(vS,sT|C=1)LICL I→T ≥ log(N)− I(vS, sT) (22)

⇔ I(vS, sT) ≥ log(N)− Eη(vS,sT|C=1)LICL I→T .

(23)

By minimizing LICL I→T , the lower bound on mutual
information I(vS, sT) is maximized. The mutual infor-
mation I(vS, sT) measures uncertainty reduction in con-
trastive feature embeddings from the teacher text encoder
when the anchor embedding from the student visual encoder
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(a) R@1 (%) on CC3M Val.
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(b) Accuracy (%) on ImageNet.

Figure 1. Training curves using ViT-B/16 as the teacher and ViT-
T/16 as the student for CLIP-KD compared to the baseline.

Table 1. Analysis of FD loss weight λFD . ’scratch→converge’
denotes the change of loss value from scratch to convergence.

λFD
Loss ImageNet CC3M Val

scratch→converge Acc I2T T2I

10 0.079→0.013 31.1 33.6 33.5
100 0.794→0.089 32.3 34.6 34.4
1000 7.721→0.538 33.7 36.7 36.4
2000 15.880→0.902 34.2 37.1 36.9
3000 30.452→1.651 34.1 37.0 36.6

is known. Since LICL T→I is symmetric to LICL I→T ,
the lower bound on mutual information I(sS, vT) can be
maximized by minimizing LICL T→I . The mutual infor-
mation I(sS, vT) measures uncertainty reduction in con-
trastive feature embeddings from the teacher visual encoder
when the anchor embedding from the student text encoder
is known. By maximizing the lower bound of mutual in-
formation, the student network reduces uncertainty with the
teacher. This means that ICL guides the student to learn
more common knowledge from the teacher, leading to bet-
ter feature representations.

3. Experiments
In this section, we conduct thorough analyses and abla-
tion experiments to investigate CLIP-KD. Unless otherwise
specified, the teacher and student visual encoders are ViT-
B/16 and ViT-T/16, respectively.

Analysis of Training performance curves of CLIP-
KD Fig. 1a and Fig. 1b show performance curves of cross-
modal retrieval and ImageNet classification, respectively.
CLIP-KD outperforms the baseline consistently during the
training process.

Analyses of hyper-parameters In this section, we in-
vestigate the impact of hyper-parameters on distillation per-
formance.

Loss weight of FD As shown in Table 1, we examine
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Figure 2. Top-1 accuracy on zero-shot ImageNet using intermediate feature distillation trained from CC3M+12M.

Table 2. Analysis of CRD loss weight λCRD .

λCRD
ImageNet CC3M Val

Acc I2T T2I

0.5 31.6 34.9 34.6
1 31.9 35.3 34.9
2 31.7 35.2 34.8
10 31.2 34.9 34.6

Table 3. Analysis of GD loss weight λGD .

λGD
ImageNet CC3M Val

Acc I2T T2I

106 30.6 33.7 33.1
107 30.8 33.9 33.3
108 31.5 34.5 34.0
109 31.4 34.2 33.7

Table 4. Analysis of ICL loss weight λICL.

λICL
ImageNet CC3M Val

Acc I2T T2I

0.5 33.7 37.0 36.8
1 34.2 37.1 36.9
2 33.9 36.8 36.8
10 33.6 36.3 36.3

the impact of FD’s loss weight λFD. The performance
is gradually improved as λFD increases but saturates at
λFD = 2000.

Loss weight of CRD As shown in Table 2, we examine
the impact of CRD’s loss weight λCRD. Overall, the per-
formance is robust to the weight change, where λCRD = 1
is a suitable choice. This is because CRD loss is entropy-
based KL-divergence loss, and the magnitude is consistent
with cross-entropy-based task loss.

Loss weight of GD As shown in Table 3, we examine

Table 5. Analysis of mask ratio for MFD.

Mask ratio ImageNet CC3M Val
Acc I2T T2I

0 34.2 37.1 36.9
0.25 34.1 37.4 36.8
0.5 33.8 37.3 36.7
0.75 33.8 37.1 36.9

Table 6. Linear evaluation on MS-COCO object detection using a
CC3M+12M pretrained ResNet-50 over Mask-RCNN framework.

Method Object detection
APbb APbb

50 APbb
75 APbb

S APbb
M APbb

L

Baseline 32.6 52.3 34.8 18.0 35.6 42.4
+CLIP-KD 34.0 53.9 36.5 20.0 36.8 43.8

Table 7. Linear evaluation on MS-COCO instance segmenta-
tion using a CC3M+12M pretrained ResNet-50 over Mask-RCNN
framework.

Method Instance segmentation
APseg APseg

50 APseg
75 APseg

S APseg
M APseg

L

Baseline 29.9 49.5 31.8 13.1 32.2 44.2
+CLIP-KD 31.1 50.9 32.9 14.2 33.3 45.4

the impact of GD’s loss weight λGD. The performance
is gradually improved as λGD increases but saturates at
λGD = 108.

Loss weight of ICL As shown in Table 4, we examine
the impact of ICL’s loss weight λICL. Overall, the perfor-
mance is robust to the weight change, where λICL = 1
achieves the best performance. ICL has the same con-
trastive loss function as CLIP task loss, so λICL = 1 leads
to the same magnitude as CLIP task loss.

Mask ratio As shown in Table 5, we examine the impact
of mask ratio. Using various mask ratios does not result in
more performance gains than the no-masking baseline.



Distilling intermediate features. In Figure 2, we ap-
ply intermediate feature distillation across ViT and ResNet
pairs. We find homogeneous pairs achieve better accuracy
than heterogeneous pairs, e.g., ViT-T/16 obtains a 2.17%
gain supervised by ViT-B/16 but only gets a 0.56% gain by
ResNet-101. This is because the former has a more simi-
lar feature extraction process and provides student-friendly
knowledge. Distilling intermediate features may be sen-
sitive to teacher-student architectures. Therefore, we con-
duct the final-output-based CLIP-KD methods that use con-
trastive embeddings to construct distillation losses to avoid
the architecture-mismatching problem.

Linear evaluation on MS-COCO object detection and
instance segmentation. As shown in Table 6, we conduct
downstream MS-COCO [4] object detection and instance
segmentation experiments under the same linear evaluation
protocol as F-VLM [3]. The backbone is a ResNet-50 pre-
trained on CC3M+12M. We adopt Mask-RCNN [2] frame-
work, and apply the 1x training schedule to finetune the
model. The implementation is based on MMDetection [1].
We leverage the standard COCO metric Average Precision
(AP) to measure performance, including bounding box de-
tection AP (APbb) for object detection and mask AP (APseg)
for instance segmentation. CLIP-KD achieves consistent
performance improvements over the original CLIP without
KD by average AP margins of 1.5% and 1.2% on object de-
tection and instance segmentation, respectively. The results
indicate that CLIP-KD can also generate better distilled fea-
tures under linear evaluation for downstream dense predic-
tion tasks.
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