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A. Overview

This supplementary document provides some implementa-
tion details and further results that accompany the paper.

• Section B introduces the implementation details of the
network architecture in our approach.

• Section C provides additional results, including more vi-
sualizations, rendering efficiency, more comparisons, and
more ablations.

• Section D discusses the failure cases of our method.

B. Implementation Details

B.1. Network Architecture of the Deformation Field

We learn the deformation field with an MLP network Fθ :
(γ(sg(x)), γ(t)) → (δx, δr, δs), which maps from each co-
ordinate of 3D Gaussians and time to their corresponding
deviations in position, rotation, and scaling. The weights
θ of the MLP are optimized through this mapping. As
shown in Fig. 1, our MLP Fθ initially processes the input
through eight fully connected layers that employ ReLU acti-
vations and feature 256-dimensional hidden layers, and out-
puts a 256-dimensional feature vector. This vector is sub-
sequently passed through three additional fully connected
layers (without activation) to separately output the offsets
over time for position, rotation, and scaling. It should be
noted that similar to NeRF, we concatenate the feature vec-
tor and the input in the fourth layer. Due to the compact
structure of MLP, our additional storage compared to 3D
Gaussians is only 2MB.

Our deformation field does not employ any grid/plane-
based structures which have been demonstrated to be supe-
rior in static scenes because these structures are predicated
on a low-rank tensor assumption [1]. Dynamic scenes
possess a higher rank compared to static scenes, and explicit
point-based rendering exacerbates the rank of the scene.
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Figure 1. The architecture of our deformation MLP.
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Figure 2. Failure case on inaccurate pose. Excessively inaccu-
rate poses can lead to the failure of the convergence on the training
set.

B.2. Optimization Loss

During the training of our deformable Gaussians, we de-
form the 3D Gaussians at each timestep into the canonical
space. We then optimize both the deformation network and
the 3D Gaussians using a combination of L1 loss and D-
SSIM loss [2]:

L = (1− λ)L1 + λLD-SSIM, (1)

where λ = 0.2 is used in all our experiments.
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Method
Sieve Plate Bell Press

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓
3D-GS 23.16 0.8203 0.2247 16.14 0.6970 0.4093 21.01 0.7885 0.2503 22.89 0.8163 0.2904

TiNeuVox 21.49 0.8265 0.3176 20.58 0.8027 0.3317 23.08 0.8242 0.2568 24.47 0.8613 0.3001
HyperNeRF 25.43 0.8798 0.1645 18.93 0.7709 0.2940 23.06 0.8097 0.2052 26.15 0.8897 0.1959
NeRF-DS 25.78 0.8900 0.1472 20.54 0.8042 0.1996 23.19 0.8212 0.1867 25.72 0.8618 0.2047

Ours (w/o AST) 25.33 0.8620 0.1594 20.32 0.7173 0.3914 25.62 0.8498 0.1540 25.78 0.8613 0.1919
Ours 25.70 0.8715 0.1504 20.48 0.8124 0.2224 25.74 0.8503 0.1537 26.01 0.8646 0.1905

Cup As Basin Mean
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓
3D-GS 21.71 0.8304 0.2548 22.69 0.8017 0.2994 18.42 0.7170 0.3153 20.29 0.7816 0.2920

TiNeuVox 19.71 0.8109 0.3643 21.26 0.8289 0.3967 20.66 0.8145 0.2690 21.61 0.8234 0.2766
HyperNeRF 24.59 0.8770 0.1650 25.58 0.8949 0.1777 20.41 0.8199 0.1911 23.45 0.8488 0.1990
NeRF-DS 24.91 0.8741 0.1737 25.13 0.8778 0.1741 19.96 0.8166 0.1855 23.60 0.8494 0.1816

Ours (w/o AST) 24.80 0.8848 0.1571 26.29 0.8800 0.1830 19.68 0.7869 0.1888 23.97 0.8346 0.2037
Ours 24.86 0.8908 0.1532 26.31 0.8842 0.1783 19.67 0.7934 0.1901 24.11 0.8524 0.1769

Table 1. Quantitative comparison on NeRF-DS dataset per-scene. We color each cell as best , second best , and third best . Our
method, overall, achieves the best rendering quality and robust convergence in the majority of scenes. It is worth noting that the metrics
we used are the same as those in the main text, with LPIPS using the VGG network. Our measurement metrics differ slightly from those
used in NeRF-DS and HyperNeRF because their papers use MS-SSIM and LPIPS with the AlexNet.

D-NeRF Dataset NeRF-DS Dataset HyperNeRF Dataset

Scene FPS Num (k) Scene FPS Num (k) Scene FPS Num (k)

Lego 24 300 AS 48 185 Espresso 15 620
Jump 85 90 Basin 29 250 Americano 6 1,300
Bouncing 38 170 Bell 18 400 Cookie 9 1,080
T-Rex 30 220 Cup 35 200 Chicken 10 740
Mutant 40 170 Plate 31 230 Torchocolate 8 1,030
Warrior 172 40 Press 48 185 Lemon 23 420
Standup 93 80 Sieve 35 200 Hand 6 1,750
Hook 45 150 Printer 12 650

Table 2. Experiments on FPS with respect to the number of 3D Gaussians. The results of the experiments demonstrate that our method
is capable of real-time rendering on a 3090 GPU when the number of point clouds is less than 250k. The excessively high number of 3D
Gaussians in HyperNeRF reflects the critical importance of the camera pose accuracy for the convergence of our method.

C. Additional Results

C.1. Per-Scene Results on the NeRF-DS Dataset

In Tab. 1, we provide the results for individual scenes asso-
ciated with Sec. 4 of the main paper. It can be observed that
our method achieved superior metrics in almost every scene
compared to those without AST, underscoring the general-
izability of AST on real datasets where the pose is not per-
fectly accurate. Overall, our method outperforms baselines
on the NeRF-DS Dataset.

C.2. Results on the HyperNeRF Dataset

We visualize the results of the HyperNeRF dataset in Fig. 3.
Notably, metrics designed to assess image rendering qual-
ity, such as PSNR, tend to penalize minor offsets more heav-
ily than blurring. Therefore, for datasets with less accurate
camera poses, like HyperNeRF, our method’s quantitative

metrics might not consistently outperform those of methods
yielding blurred outputs when faced with imprecise camera
poses. Despite this, our rendered images often exhibit fewer
artifacts and greater clarity. This phenomenon aligns with
observations reported in Nerfies [4] and HyperNeRF [5].

C.3. Results on Rendering Efficiency

In our research, we present comprehensive Frames Per Sec-
ond (FPS) testing results in Tab. 2. Tests were conducted
on one NVIDIA RTX 3090. It is observed that when the
number of point clouds remains below ∼250k, our method
can achieve real-time rendering at rates greater than 30 FPS.
A point of note is that the point cloud count reconstructed
from the HyperNeRF dataset significantly exceeds that of
other datasets, reaching a level of 1,000k. This excessive
count is attributed to the highly inaccurate camera poses
within the HyperNeRF dataset. In contrast, the NeRF-
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Figure 3. Qualitative comparisons of baselines and our method on HyperNeRF dataset. The first three rows present the results of the
time interpolation task, while the last two rows depict the outcomes of the novel viewpoint synthesis task. Experimental results indicate
that our method can achieve superior rendering quality on real datasets where the pose is not absolutely precise.

lego jump bouncing trex mutant warrior standup hook mean
ours 33.07 37.72 41.01 38.10 42.63 41.54 44.62 37.42 39.51
ours-SE(3) 32.91 37.60 41.05 38.29 42.83 41.73 44.68 37.60 39.58

Table 3. Comparison with SE(3) deformation field on the D-NeRF dataset.

as basin bell cup plate press sieve mean
ours 26.31 19.67 25.74 24.86 20.48 26.01 25.70 24.11
ours-SE(3) 26.37 19.64 25.43 24.83 20.28 25.63 25.46 23.95

Table 4. Comparison with SE(3) deformation field on the NeRF-DS dataset.
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Figure 4. Failure case on few training viewpoints. The first three columns represent the original dataset configurations. The term swap
indicates the exchange of training and test sets, thereby ensuring that the model’s inputs possess a sufficiently diverse array of viewpoints

Hell Warrior Mutant Hook
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o δs 41.55 0.9878 0.0223 42.15 0.9949 0.0053 37.01 0.9859 0.0153
w/o δr 41.17 0.9866 0.0256 42.51 0.9950 0.0054 36.82 0.9852 0.0167
w r&s 40.39 0.9833 0.0323 41.30 0.9934 0.0075 36.15 0.9818 0.0214
ours 41.54 0.9873 0.0234 42.63 0.9951 0.0052 37.42 0.9867 0.0144

Bouncing Balls Lego T-Rex
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o δs 40.82 0.9952 0.0095 31.30 0.9705 0.0260 37.39 0.9928 0.0105
w/o δr 41.11 0.9953 0.0092 32.87 0.9783 0.0192 37.99 0.9931 0.0101
w r&s 39.89 0.9945 0.0117 33.71 0.9798 0.0181 37.06 0.9923 0.0113
ours 41.01 0.9953 0.0093 33.07 0.9794 0.0183 38.10 0.9933 0.0098

Stand Up Jumping Jacks Mean
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o δs 44.05 0.9946 0.0074 37.49 0.9895 0.0129 38.97 0.9889 0.0137
w/o δr 44.18 0.9946 0.0075 37.48 0.9893 0.0138 39.27 0.9897 0.0134
w r&s 42.88 0.9932 0.0097 37.00 0.9878 0.0164 38.55 0.9883 0.0160
ours 44.62 0.9951 0.0063 37.72 0.9897 0.0126 39.51 0.9902 0.0124

Table 5. Ablations on network architecture. We color each cell as best and second best . δr and δs denote the output components of
the MLP model. The term w r&s signifies that the model inputs include not only time and the position of the 3D Gaussians but also the
3D Gaussians’ rotation and scaling. The experimental outcomes affirm that our network architecture is the most advantageous.

DS dataset, while also being derived from the real world,
exhibits more accurate poses, resulting in a reconstructed
point cloud count within a reasonable range. This issue
of an overabundant point cloud count occurs not only in
scenes with inaccurate poses but also in those with sparse
viewpoints, as evidenced in scenes like the D-NeRF’s Lego
scene, which was trained on merely 50 images.

C.4. More Ablations

Network architecture. We present ablation experiments
on the architecture of our purely implicit network, as shown
in Tab. 5. The results of these experiments suggest that the
structure within our pipeline is optimal. Notably, we did not
adopt Grid/Plane-based structures because dynamic scenes
do not conform to the low-rank assumption. Furthermore,



lego jump bouncing trex mutant warrior standup hook mean
ours 33.07 37.72 41.01 38.10 42.63 41.54 44.62 37.42 39.51
ours-white 32.03 36.87 43.52 38.57 42.11 32.75 42.40 36.60 38.10
ours-best 33.07 37.72 43.52 38.57 42.63 41.54 44.62 37.42 39.89

Table 6. Comparison with different background colors on the D-NeRF dataset.We explored the impact of different background
colors on rendering metrics using the D-NeRF dataset. The experimental results showed that overall, a black background yielded higher
metrics, while bouncing and trex scenes performed better with a white background, and the warrior scene had higher metrics with a black
background. To ensure experimental consistency, we uniformly used a black background in the main text. If one wishes to pursue the
best metrics for a specific scene, one can refer to this table to adjust the background color.

the explicit point-based rendering of 3D-GS exacerbates the
rank of dynamic scenes. Our early experimental validations
have corroborated this assertion.

C.5. Background color

In the research of Neural Rendering, it’s common to use
a black or white background for rendering scenes with-
out a background. In our experiments, we found that the
background color has an impact on certain scenes in the
D-NeRF dataset. The experimental results are shown in
Tab. 6. Overall, a black background yields better rendering
results. For the sake of consistency in our experiments, we
uniformly used a black background in our main text exper-
iments. However, for the bouncing and trex scenes, using a
white background can produce better results.

C.6. Deformation using SE(3) Field

Drawing inspiration from Nerfies [4], we applied a 6-DOF
SE(3) field that accounts for rotation to the transformation
of 3D Gaussian positions. The experimental results, pre-
sented in Tab. 3 and Tab. 4, indicate that this constraint of-
fers a minor improvement on the D-NeRF dataset. How-
ever, it appears to diminish the quality on the more com-
plex real-world NeRF-DS dataset. Moreover, the additional
computational overhead introduced by the SE(3) Field ap-
proximately increases 50 % of the training time and results
in about a 20% decrease in FPS during rendering. Conse-
quently, we opted to utilize a direct addition without impos-
ing SE(3) constraints on the transformation of position.

D. Failure Cases

Inaccurate poses. In our research, we find that inac-
curate poses can lead to the failure of the convergence of
deformable-gs, as illustrated in Fig. 2. For implicit repre-
sentations, their inherent smoothness can maintain robust-
ness in the face of minor deviations in pose. However,
for the explicit point-based rendering, such inaccuracies are
particularly detrimental, resulting in inconsistencies in the
scene at different moments.

Few training viewpoints. In our study, a notable scarcity
of training views presents a dual challenge: both few-shot
learning and a limited number of viewpoints. Either aspect
can lead to overfitting in deformable-gs and even in 3D-GS
on the training set. As demonstrated in Fig. 4, significant
overfitting is evident in the DeVRF [3] dataset. The training
set for this scene contains 100 images, but the viewpoints
for training are limited to only four. However, by swapping
the training and test sets, where the test set contained an
equal number of 100 images and viewpoints, we obtained
markedly better results.

References
[1] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao

Su. Tensorf: Tensorial radiance fields. In European Confer-
ence on Computer Vision (ECCV), pages 333–350, 2022. 1

[2] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023. 1

[3] Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang,
David Junhao Zhang, Jussi Keppo, Ying Shan, Xiaohu Qie,
and Mike Zheng Shou. Devrf: Fast deformable voxel radi-
ance fields for dynamic scenes. Advances in Neural Informa-
tion Processing Systems, 35:36762–36775, 2022. 5

[4] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5865–5874, 2021. 2, 5

[5] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. ACM Transactions on Graphics, 40(6):1–12,
2021. 2


	. Overview
	. Implementation Details
	. Network Architecture of the Deformation Field
	. Optimization Loss

	. Additional Results
	. Per-Scene Results on the NeRF-DS Dataset
	. Results on the HyperNeRF Dataset
	. Results on Rendering Efficiency
	. More Ablations
	. Background color
	. Deformation using SE(3) Field

	. Failure Cases

