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1. More Implementation Details
We resize the shorter side of all images to 518 and keep the
original aspect ratio. All images are cropped to 518×518
during training. During inference, we do not crop images
and only ensure both sides are multipliers of 14, since the
pre-defined patch size of DINOv2 encoders [12] is 14. Eval-
uation is performed at the original resolution by interpolating
the prediction. Following MiDaS [3, 13], in zero-shot eval-
uation, the scale and shift of our prediction are manually
aligned with the ground truth.

When fine-tuning our pre-trained encoder to metric depth
estimation, we adopt the ZoeDepth codebase [2]. We merely
replace the original MiDaS-based encoder with our stronger
Depth Anything encoder, with a few hyper-parameters mod-
ified. Concretely, the training resolution is 392×518 on
NYUv2 [15] and 384×768 on KITTI [9] to match the patch
size of our encoder. The encoder learning rate is set as
1/50 of the learning rate of the randomly initialized decoder,
which is much smaller than the 1/10 adopted for MiDaS
encoder, due to our strong initialization. The batch size is 16
and the model is trained for 5 epochs.

When fine-tuning our pre-trained encoder to semantic seg-
mentation, we use the MMSegmentation codebase [6]. The
training resolution is set as 896×896 on both ADE20K [17]
and Cityscapes [7]. The encoder learning rate is set as
3e-6 and the decoder learning rate is 10× larger. We use
Mask2Former [5] as our semantic segmentation model. The
model is trained for 160K iterations on ADE20K and 80K
iterations on Cityscapes both with batch size 16, without
any COCO [11] or Mapillary [1] pre-training. Other training
configurations are the same as the original codebase.

2. More Ablation Studies
All ablation studies here are conducted on the ViT-S model.

The necessity of tolerance margin for feature alignment.
As shown in Table 1, the gap between the tolerance margin
of 1.00 and 0.85 or 0.70 clearly demonstrates the necessity

α KITTI NYU Sintel DDAD ETH3D DIODE Mean

1.00 0.085 0.055 0.523 0.250 0.134 0.079 0.188
0.85 0.080 0.053 0.464 0.247 0.127 0.076 0.175
0.70 0.079 0.054 0.482 0.248 0.127 0.077 0.178

Table 1. Ablation studies on different values of the tolerance margin
α for the feature alignment loss Lfeat. Limited by space, we only
report the AbsRel (↓) metric here.

Lfeat Unseen datasets (AbsRel ↓) Mean
U L KITTI NYU Sintel DDAD ETH3D DIODE

0.083 0.055 0.478 0.249 0.133 0.080 0.180
✓ 0.080 0.053 0.464 0.247 0.127 0.076 0.175

✓ 0.084 0.054 0.472 0.252 0.133 0.081 0.179

Table 2. Ablation studies of applying our feature alignment loss
Lfeat to unlabeled data (U) or labeled data (L).

of this design (mean AbsRel: 0.188 vs. 0.175).

Applying feature alignment to labeled data. Previously,
we enforce the feature alignment loss Lfeat on unlabeled
data. Indeed, it is technically feasible to also apply this
constraint to labeled data. In Table 2, apart from applying
Lfeat on unlabeled data, we explore to apply it to labeled
data. We find that adding this auxiliary optimization target
to labeled data is not beneficial to our baseline that does not
involve any feature alignment (their mean AbsRel values are
almost the same: 0.180 vs. 0.179). We conjecture that this is
because the labeled data has relatively higher-quality depth
annotations. The involvement of semantic loss may interfere
with the learning of these informative manual labels. In com-
parison, our pseudo labels are noisier and less informative.
Therefore, introducing the auxiliary constraint to unlabeled
data can combat the noise in pseudo depth labels, as well as
arm our model with semantic capability.
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3. Limitations and Future Works
Currently, the largest model size is only constrained to ViT-
Large [8]. Therefore, in the future, we plan to further scale
up the model size from ViT-Large to ViT-Giant, which is
also well pre-trained by DINOv2 [12]. We can train a more
powerful teacher model with the larger model, producing
more accurate pseudo labels for smaller models to learn, e.g.,
ViT-L and ViT-B. Furthermore, to facilitate real-world ap-
plications, we believe the widely adopted 512×512 training
resolution is not enough. We plan to re-train our model on a
larger resolution of 700+ or even 1000+.

4. More Qualitative Results
Please refer to the following pages for comprehensive quali-
tative results on six unseen test sets (Figure 1 for KITTI [9],
Figure 2 for NYUv2 [15], Figure 3 for Sintel [4], Figure 4
for DDAD [10], Figure 5 for ETH3D [14], and Figure 6 for
DIODE [16]). We compare our model with the strongest
MiDaS model [3], i.e., DPT-BEiTL-512. Our model exhibits
higher depth estimation accuracy and stronger robustness.
Please refer to our project page for more visualizations.



Input image Our prediction MiDaS v3.1 prediction

Figure 1. Qualitative results on KITTI. Due to the extremely sparse ground truth which is hard to visualize, we here compare our prediction
with the most advanced MiDaS v3.1 [3] prediction. The brighter color denotes the closer distance.



Input image Our prediction MiDaS v3.1 prediction

Figure 2. Qualitative results on NYUv2. It is worth noting that MiDaS [3] uses NYUv2 training data (not zero-shot), while we do not.



Input image Our prediction MiDaS v3.1 prediction

Figure 3. Qualitative results on Sintel.
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Figure 4. Qualitative results on DDAD.



Input image Our prediction MiDaS v3.1 prediction

Figure 5. Qualitative results on ETH3D.



Input image Our prediction MiDaS v3.1 prediction

Figure 6. Qualitative results on DIODE.
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