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A. Implementation Details

Figure 1. Spherical Coordinate System [8].

Camera Embedding. Following Zero-1-to-3 [4], we uti-
lize a spherical coordinate system to represent camera lo-
cations and their relative transformations. As shown in
Figure 1, during the training stage, camera locations of
two images from disparate viewpoints are designated as
(θ1, ϕ1, r1) and (θ2, ϕ2, r2), respectively. The relative
transformation between these camera positions is expressed
as (θ2 − θ1, ϕ2 − ϕ1, r2 − r1). In both the training and
inference stages, four parameters delineating the relative
camera viewpoint [∆θ, sin(∆ϕ), cos(∆ϕ),∆r] are inputted
into the cross-attention layers of DreamComposer’s Target-
Aware 3D Lifting Module and Target-View Feature Injec-
tion Module to provide camera view information.
Architecture and Hyperparameters. We design Target-
Aware 3D Lifting Module based on the U-Net architec-
ture from Stable Diffusion [7]. This model’s architecture
is specifically configured with a model dimension of 192
and includes two residual blocks at each resolution level.
A distinctive feature of our approach is the integration of a
cross-attention module, which facilitates the processing of
relative camera embeddings.

For our experiments, we standardize the image dimen-
sions at 256× 256 pixels. Correspondingly, this establishes
the latent space dimensionality at 32×32. Additionally, we
configure the triplane dimensions at 32 × 32 × 3, with the

feature dimension of each triplane element being set to 32.
Training Details. We adopt a two-stage training strategy
for DreamComposer. In the first stage, we focus on the 3D
feature lifting module and pre-train it for 80k steps (∼ 3
days) with 8 80G A800 GPUs using a total batch size of
576. The pre-trained 3D lifting module can be applied in
conjunction with different pre-trained diffusion models for
subsequent training. In the second stage, we jointly opti-
mize the 3D lifting and feature injection module. This stage
takes 30k steps (∼ 2 days) with 8 80G A800 GPUs using a
total batch size of 384.

B. Additional Ablation Analysis

B.1. Comparison with NVS from sparse views

To compare with novel view synthesis methods from
sparse-view inputs, we choose ViewFormer [3] as com-
petitor, which achieves significant results on the CO3D
dataset [6]. ViewFormer is designed for novel view syn-
thesis using sparse-view inputs, employing transformers to
process multiple context views and a query pose. This ap-
proach allows for the synthesis of novel images within an
advanced neural network architecture. For our evaluation,
we utilize the ViewFormer model that has been comprehen-
sively trained on the CO3D dataset [6], ensuring a fair com-
parison with its contemporary counterparts. The evaluation
dataset setting is same as the one in Section 4.3. The quanti-
tative results are shown in Table 1, and the qualitative results
are shown in Figure 4. While ViewFormer shows profi-
ciency in handling the CO3D dataset, it exhibits limitations
in processing out-of-distribution data. DC-Zero-1-to-3 far
surpasses novel view synthesis methods with sparse-view
inputs in both qualitative and quantitative analysis.

Our method is capable of zero-shot learning and also
demonstrates superior performance compared to other few-
shot reconstruction methods when testing on their datasets.
A qualitative comparison with PixelNeRF (PN), NerFormer
(NF), SF (SparseFusion) is presented in Figure 2. The con-
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(a) Elevation Degree - 0
Methods PSNR ↑ SSIM ↑ LPIPS ↓

ViewFormer 13.45 0.630 0.359
Zero-1-to-3 20.82 0.840 0.139

DC-Zero-1-to-3 (Ours) 25.25 0.888 0.088

(b) Elevation Degree - 15
Methods PSNR ↑ SSIM ↑ LPIPS ↓

ViewFormer 13.00 0.618 0.371
Zero-1-to-3 21.38 0.837 0.131

DC-Zero-1-to-3 (Ours) 25.85 0.891 0.083

(c) Elevation Degree - 30
Methods PSNR ↑ SSIM ↑ LPIPS ↓

ViewFormer 13.02 0.618 0.373
Zero-1-to-3 21.66 0.837 0.128

DC-Zero-1-to-3 (Ours) 25.63 0.885 0.086

Table 1. Quantitative comparisons of novel view synthesis on GSO
dataset using four orthogonal angles’ images as inputs. DC-Zero-
1-to-3 far surpasses other methods on all metrics.

tents in CO3DV2 dataset is not at the center of images,
which is not aligned to the setting of Zero-1-to-3 and Sync-
Dreamer, so it is not proper to give quantitative results.

Input PN NF SF Ours GT

Figure 2. Qualitative comparison with PixelNeRF (PN), Ner-
Former (NF), SF (SparseFusion) in novel view synthesis.

B.2. Scalability for arbitrary inputs

We further explore our model’s flexibility and scalability
in managing arbitrary numbers of inputs. We evaluate the
model’s performance using the same set of 30 objects from
Section 4.3, but with differing input counts. To ensure the
robustness of the experiment, we strategically select input
perspectives to encompass a broad area. Specifically, for
2 inputs, we use angles 0◦ and 180◦; for 3 inputs, we use
angles 0◦, 90◦, 180◦; for 4 inputs, we use angles 0◦, 90◦,
180◦, 270◦. We show the quantitative results in Table 2.
Subsequently, we assess additional datasets and present the
qualitative outcomes in Figure 6.

B.3. Necessity of view-conditioning for 3D lifting.

Under different angle difference inputs, we visualize the tri-
plane features from the target view. As shown in Figure 3,
the projection from the target view has the highest quality.
The experimental setup, as outlined in the first column, in-

volves two inputs with the primary view presented at the
top. The difference in views is computed in relation to this
primary view. In the first row, the specified view difference
is 20 degrees, hence, only the subsequent result at the cor-
responding 20 degrees is deemed valid. Similarly, in the
second row, a view difference of 70 degrees is specified,
making only the subsequent result at the corresponding 70
degrees valid.
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Figure 3. Latent space visualization with different angle attention.

C. Additional Results
C.1. DC-SyncDreamer Results

We present more qualitative comparisons of Sync-
Dreamer [5] and our method on the GSO [2] dataset, as
shown in Figure 5. We utilize an image as the input for
SyncDreamer, as well as the main input view for our DC-
SyncDreamer. We further generate the back-view image of
the object with Zero-1-to-3 [4], serving as an additional
condition-view for DC-SyncDreamer. We present addi-
tional qualitative results on Objaverse [1] dataset in Fig-
ure 7. Video demonstrations of these generated objects
are included in the supplementary material. Leveraging the
multi-view information about the object, DC-SyncDreamer
is capable of generating controllable novel views and 3D
objects.

D. Limitations
Although DreamComposer can leverage multi-view inputs
to enhance zero-shot novel view synthesis, we empirically
found that it is still unsatisfactory in preserving fine-grained
textures from non-main view input images. It may be
caused by the fact that we adopt multi-view conditioning on
a low-resolution latent space, which is efficient but suffers
from the loss of high-frequency details. In addition, angular
deviations between multi-view input images may affect the
generation quality.
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Figure 4. Qualitative comparisons with ViewFormer [3] and Zero-1-to-3 [4] of novel view synthesis on GSO dataset using four orthogonal
angles’ images as inputs. ViewFormer, despite its training on the CO3D dataset, demonstrates limitations in processing out-of-domain
data. In contrast, by integrating multi-view information, our model exhibits the capability to produce controllable and superior-quality
images from new perspectives of in-the-wild data.



SynD
SynD

+ O
urs

Input Novel View Synthesis Mesh

v

SynD
SynD

+ O
urs

SynD
SynD

+ O
urs

SynD
SynD

+ O
urs

Figure 5. Qualitative comparisons with SyncDreamer (SyncD) [5] in controllable novel view synthesis and 3D reconstruction. The image
in □ is the main input, and the other image in □ is the conditional input generated from Zero-1-to-3 [4]. With more information in multi-
view images, DC-SyncDreamer is able to generate more accurate back textures and more controllable 3D shapes.
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Figure 6. Ablation study to demonstrate the scalability of DreamComposer. Our model can handle various inputs and that its control over
the results gets better as the amount of information from the inputs increases.



Elevation Degree - 0 Elevation Degree - 15 Elevation Degree - 30
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

2 views 20.38 0.826 0.159 22.33 0.847 0.125 22.42 0.845 0.124
3 views 23.68 0.869 0.108 24.56 0.875 0.098 24.27 0.867 0.102
4 views 25.25 0.888 0.088 25.85 0.891 0.083 25.63 0.885 0.086
5 views 26.10 0.897 0.081 26.62 0.899 0.078 26.52 0.895 0.079
6 views 26.99 0.907 0.074 27.39 0.907 0.072 27.26 0.903 0.073

Table 2. Quantitative comparisons on the GSO dataset with different number of inputs. As the number of input images increases, the
generation of new perspectives becomes more controllable.
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Figure 7. Qualitative comparisons with SyncDreamer (SyncD) on Objaverse dataset.
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