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1. Construction Details
Here we present the detailed network design in our method.

1.1. Dataset

Our dataset is derived from the large-scale EmoSet. There
are several details worth mentioning. Considering the aim
of Emotional Image Content Generation (EICG), we focus
on the image content. Therefore, when deriving our train-
ing dataset, we only choose images with scene or object at-
tributes. If an image contains both scene and object labels,
scene attributes will be preserved to serve as our seman-
tic guidance. If an image consists multiple object labels,
the first object with the highest confidence score will be re-
stored. After implementing the filtering strategies, we can
successfully derive a subset of EmoSet, where number of
images is decreased to 75,460. Additionally, We find that
imbalanced emotions may lead to sub-optimal generation
results. Thus we employ random oversampling by duplicat-
ing images in categories with fewer samples to align with
the larger ones.

1.2. Emotion Space

The aim for emotion space is to find powerful emotional
representations where similar emotions are gathered to-
gether and dissimilar ones are set apart. Intuitively, we
employ layers before the last fully connected layer in the
classifier as our emotion encoder. Since the emotion classi-
fier can achieve high accuracy, we assume that the emotion
encoder can well capture the emotional relationships.

To construct the emotion space, we utilize the entire
EmoSet and employ ResNet50 as backbone to train an
eight-class emotion classifier. Specifically, the last layer
is replaced with a fully connected layer of size (2048,768)
with an activation function, a dropout layer, and a fully
connected layer of size (768,8). The emotion encoder φ,
capable of capturing emotion representation, is constructed
by removing the last layer of the trained emotion classifier.
We learn the emotional representations from all the 118,102
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Figure 1. Detailed illustration of the mapping network.

samples in EmoSet. As eight emotions in the emotion space
are separated, we simulate their distributions with Gaussian
function and construct it by calculating the mean and stan-
dard deviation of each emotion. By calculating the similar-
ity between the real distribution and simulated one, we find
that Gaussian function is suitable for our task.

1.3. Mapping Network

To bridge the gap between emotion space and CLIP space,
we introduce a mapping network with a non-linear projec-
tion, followed by a transformer and linear projection. We
attempt to use different mapping strategies by altering the
number of layers, as shown in Table 1. We finally draw a
conclusion that a two-layer MLP is the best choice with a
perfect non-linear intensity.

In the mapping network, we employ a non-linear projec-
tion consisting of two fully connected layers with a ReLU
activation function sandwiched in between. The FC layers
are designed with the size of (768,1024) and (1024,768).
The parameters inside the transformer and linear projection
are taken from the same version of CLIP text encoder in-
side the stable diffusion. Specifically, emotion features are
mapped through a non-linear projection into the embedding
layer of the transformer.

Image Encoder and U-Net leverage parameters sourced
from vae and U-Net within runwayml/stable-diffusion-v1-
5. Figure 1 shows the specific design of the mapping
network. Following [1], we opt the end-token embedding
f<eos> with dimension (1, 768), followed by a linear pro-
jection into the CLIP space.



Table 1. Ablation study on the layer number of the non-linear
projection, involving five metrics.

Method FID ↓ LPIPS ↑ Emo-A ↑ Sem-C ↑ Sem-D ↑

DB(5 images) 160.46 0.638 71.03% 0.530 0.0129
DB(5000 images) 60.87 0.652 50.77% 0.509 0.0163
DB(balance strategy) 54.15 0.648 55.38% 0.490 0.0146
DB 46.89 0.661 70.50% 0.614 0.0178

SD(caption finetune) 54.81 0.697 72.82% 0.584 0.0219
Ours 41.60 0.717 76.25% 0.633 0.0335
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Figure 2. Emotion confidence of sports equipment on excitement.

1.4. Attribute Loss

Since attribute loss needs the guidance of object/scene, all
images in the derived subset can be utilized in its optimiza-
tion process. As mentioned above, we preserve only one
semantic label for each image to compute the attribute loss,
considering that each feature in emotion space can only has
a unique optimization direction. That is, if a sample point
is simultaneously optimized to the direction of amusement
park, trees, people, and balloons, the network will learn at-
tributes in a chaotic mode.

1.5. Emotion Confidence

Considering the fact that EmoSet comprises 118,102 emo-
tional images collected from different sources, i.e., open-
verse, pexels, pixabay and rawpixels, we assume that
EmoSet can represent the visual emotion distribution in real
world correctly and comprehensively.

We further train an emotion classifier on the CLIP space,
which achieves an accuracy of 83%. Regarding to the high
value in emotion accuracy, we believe that the pre-trained
emotion classifier can separate different emotions effec-
tively. Thus, we use this classifier to calculate the emotion
confidences between emotions and attributes, hoping to fil-
ter emotional attributes from the emotion-agnostic ones.

Compared with real-world data, Calculating emotion
confidence with EmoSet may inevitably introduce some bi-
ases. However, the bias in Figure 2 is tolerable. When im-
age number reaches 200, emotion confidence falls within a
95% confidence interval of [0.817, 0.855], as calculated by
Bootstrap. Experiments have also verified the effectiveness
of emotion confidence both quantitatively and qualitatively.

2. Implementation Details
Our experiments are implemented based on PyTorch and
performed on eight Quadro RTX 6000 with 24GB mem-
ory. We use the pre-trained stable-diffusion-v1-5 model and
clip-vit-large-patch14 model. To train the non-linear pro-
jection, we utilize the subset of EmoSet. Emotion space
is constructed with an emotion extractor trained by the en-
tire EmoSet. Specifically, the dataset was split into 80% for
training, 5% for validation, and 15% for testing, following
the previous work. Emotion loss in the first stage is trained
with a learning rate of 0.001 and a batch size of 32 to opti-
mize while LDM loss and attribute loss in the second stage
is trained with a learning rate of 0.001 and a batch size of
1. For the user study, we hired 14 healthy Asian volunteers
comprising 10 males and 4 females, with ages ranging from
22 to 56.

2.1. Comparative Methods

In the comparative methods (i.e., SD, TI, DB), stable dif-
fusion is sourced from runwayml/stable-diffusion-v1-5 and
training data encompasses all the images in the EmoSet sub-
set, aligning with the proposed method. We adhere the same
training steps and learning rate with their original settings.
Unlike the customized image generation task, multiple con-
cepts may coexist in one emotion category, rendering the
use of the original 3-5 input images impractical. Take DB
as an example, we present three additional settings in Ta-
ble 1, involving different training sizes (i.e., 5, 5000, all)
and strategies (i.e., w, w/o attribute balancing), where re-
sults in our paper achieve the best performance across five
metrics. Notably, 5-image setting yields better result on
Emo-A but exhibits a large gap on FID and Sem-D, which
arises from a straightforward duplication of the learned 5
images.

Besides, we try to finetune with all captions in EmoSet.
A primary challenge in EICG is the scarcity of manually an-
notated data. Another critical issue is the affective gap, for
which we build a mapping network to interprete abstract
emotions with concrete semantics. Since EmoSet is not
annotated with captions, we employ BLIP2 to assign each
image a text description by utilizing Salesforce/blip2-opt-
2.7b. We then use captions with emotion labels to fine-tune
SD with the whole EmoSet and report the result in Table 1,
which achieves comparable results on five metrics.

3. Evaluation Metrics
As we introduce a new task, namely EICG, specially-
crafted metrics should be designed in purpose. Rather than
the commonly-used FID and LPIPS, we propose custom
metrics to estimate the emotion fidelity, semantic clarity and
semantic diversity of the generated images. The details on
each evaluation metric are described as follows:



FID We adapt the FID to quantify the distribution dis-
tance between generated and real image. The lower the
score is, the better quality the generation process achieves.
In particular, we generate 1,000 images for each emotion
and then calculated the FID score across all of them against
our derived subset.

LPIPS To assess the overall image diversity, we employ
LPIPS, i.e., Learned Perceptual Image Patch Similarity.
We randomly select Pi pairs of images for each emotion
and calculate the LPIPS score by averaging the distances
between these pairs. Finally, we average the LPIPS scores
for each emotion to obtain the overall LPIPS:

LPIPS =
1

C

1

Pi

C∑
i=1

Pi∑
p=1

LPIPS(aip, b
i
p), (1)

where C represents the total number of emotions, Pi

denotes the number of sample pairs in emotion i and
LPIPS(·) represents the LPIPS score between the p-th
pair of image a and image b in emotion i.

Emo-A Emo-A is devised as a metric to assess emotion
faithfulness. We utilize the pre-trained emotion classifier to
predict the emotion of the generated images, and compare
it with the targeted emotion, where only the correctly gen-
erated ones contribute to the final accuracy.

Sem-C We employ the pre-trained object classifier from
ImageNet and the scene classifier from PLACES365 to clas-
sify the N images generated for each emotion. We take
the highest probability between these two classifiers to con-
struct the semantic clarity:

Sem-C =
1

N

N∑
n=1

max(vobejct(xn), vscene(xn)), (2)

where N represents the total number of generated images,
vobejct and vscene denote the classifier of object and scene.

Sem-D We randomly sample Pi pairs of images for each
emotion and calculate the Mean Squared Error (MSE) be-
tween their CLIP image embeddings as the Sem-D score
for that emotion. Then, we calculate the averaged Sem-D
scores for all eight emotions:

Sem-D =
1

C

1

Pi

C∑
i=1

Pi∑
p=1

MSE(τθ(a
i
p), τθ(b

i
p)), (3)

where C represents the number of emotion, Pi denotes the
number of samples pair in emotion i, MSE implies the
mean squared error, τθ indicates the CLIP text encoder.

4. Additional Results
In Figure 4 and Figure 5, we present the comprehensive
results on comparisons with the state-of-the-art methods
and ablation studies, where Figure 4 contains positive emo-
tions including amusement, awe, contentment and excite-
ment while Figure 5 contains negative emotions including
anger, disgust, fear and sadness. In the main paper, we have
already presented awe, anger and contentment and here we
add the remaining five emotions for completeness.

In Figure 4, we observe that the comparison methods
are mainly concentrated on textures and colors. For exam-
ple, in amusement, they can capture some emotion elements
such as a smiling face and the Ferris wheel in amusement
park, but they can hardly present them in a correct struc-
ture. In excitement, these methods can learn excited people
but fail to place them in the accurate places. We can con-
clude that it may caused by the lack of semantic guidance,
where our method can well-capture not only emotional el-
ements in low-level but also high-level semantic relation-
ships. In Figure 5, surprisingly, we find that even though
compared methods can not generate images with clear se-
mantics, they are still able to express disgust and fear to
some extent. Considering these emotions are special for
their nothingness and emptiness, where explicit contents are
not that necessary. However, our method still evokes the
corresponding emotions at the highest intensities. For the
ablation study, we notice that the images distorted terribly
with LDM loss alone, indicating the significance of attribute
loss. Without emotion confidence, our method is prone to
learn emotion-agnostic semantics caused by the unbalanced
data distribution, where plants and trees appear mostly.

In Figure 6, we present the emotion decomposition re-
sults on all eight emotions, where each of them is repre-
sented with the six most correlated semantics. When think-
ing of awe, people tend to imagine mountain snowy, flower
field, valley, canal, waterfall and gulf, where beautiful land-
scapes always bring us the feeling of respect and shock.
For anger, we may easily relate it to poster, tiger, gun,
tank, helmet and army base, which are concepts closely re-
lated to war. The correlations between emotions and con-
tents in Figure 6 are gradually formed during the process
of human evolution, where people easily experience cer-
tain emotions when viewing such objects or being within
such scenes. Notably, the machine decomposed results are
also highly aligned with human cognition, suggesting our
method is not only effective in generating emotional images
but also interpretable for human viewers.

We further combine emotions with neutral objects to cre-
ate some interesting and meaningful emotional creations
in Figure 7. In amusement, emotional elements are mostly
amusement park, smiling face, princes dress, balloon and
light show. Regarding to awe, emotional elements are al-
ways mountain snowy, blue sky, ocean, wedding and tower.
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Figure 3. Emotion fusion, where we fuse the learned amusement embedding together with other seven emotions respectively.

Considering contentment, emotional elements are flower
and bedroom while excitement are represented by football
and athletic field. For anger, there comes tiger, red mon-
ster and fire while disgust corresponds to rubbish and dirt.
While fear is pointed to scared mask while spider and skull,
cemetery and sculpture can well represent sadness. With
such elements, one can generate images with emotional cre-
ations automatically.

Eventually, we fuse different emotions together, hoping
to explore more in emotion creation. In main paper, we only
present the combination of amusement and awe, as well as
amusement and fear. In Figure 3, we expand the results
to other seven emotion and have some interesting findings.
For example, when combining amusement and contentment
together, there are funny dog, colorful car, cute dishes and
pleasant toy, which can be seen as a success combination
of these two emotional contents. While anger mostly con-
centrate on furious but funny toy tigers, sadness create some
colorful cemeteries. These initial results are interesting and
promising, which may be useful for emotional art creation.
From the above applications we can witness the potential
and significance of EICG.
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Figure 4. Comparison with the state-of-the-art methods and ablation studies of our method on four positive emotions.
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Figure 5. Comparison with the state-of-the-art methods and ablation studies of our method on four negative emotions.
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