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1. Details of Gaussian Shading
1.1. Watermark Statistical Test

Detection. Alice embeds a single-bit watermark, repre-
sented by k-bit binary watermark s ∈ {0, 1}k, into each
generated image using Gaussian Shading. This watermark
serves as an identifier for her model. Assuming the water-
mark s′ is extracted from image X , the detection test for the
watermark can be represented by the number of matching
bits between two watermark sequences, Acc(s, s′). When
the threshold τ ∈ {0, . . . , k} is determined, if

Acc(s, s′) ≥ τ, (1)

it is deemed that X contains the watermark.
In previous works [15], it is commonly assumed that

the extracted watermark bits s′1, . . . , s
′
k from the vanilla

images are independently and identically distributed, with
s′i following a Bernoulli distribution with parameter 0.5.
Thus, Acc(s, s′) follows a binomial distribution with pa-
rameters (k, 0.5). It is worth noting that if we extract from
a vanilla image and decrypt it using a computationally se-
cure stream key [1], the resulting diffused watermark s′d

should be a pseudorandom bit stream, and the correspond-
ing watermark s′ would also be pseudorandom. In other
words, the bits s′1, . . . , s

′
k are independently and identically

distributed, and each s′i follows a Bernoulli distribution with
a parameter of 0.5. This aligns perfectly with the above as-
sumption.

Once the distribution of Acc(s, s′) is determined, the
false positive rate (FPR) is defined as the probability that
Acc(s, s′) of a vanilla image exceeds the threshold τ . This
probability can be further expressed using the regularized
incomplete beta function Bx(a; b) [5],

FPR(τ) = P (Acc (s, s′) > τ) =
1

2k

k∑
i=τ+1

(
k
i

)
= B1/2(τ + 1, k − τ).

(2)

Traceability. To enable traceability, Alice needs to assign
a watermark si ∈ {0, 1}k to each user, where i = 1, . . . , N
and N represents the number of users. During the traceabil-
ity test, the bit matching count Acc(s1, s′), . . . , Acc(sN , s′)
needs to be computed for all N watermarks. If none of
the N tests exceed the threshold τ , the image is consid-
ered not generated by Alice’s model. However, if at least
one test passes, the image is deemed to be generated by

Alice’s model, and the index with the maximum match-
ing count is traced back to the corresponding user, i.e.,
argmaxi=1,...,N Acc(si, s′). When a threshold τ is given,
the FPR can be expressed as follows [5],

FPR(τ,N) = 1− (1− FPR(τ))N ≈ N · FPR(τ). (3)

1.2. Details of Denoising and Inversion

Markov chains of diffusion models. DDPM [7] proposed
that the diffusion model consists of two Markov chains used
for adding and removing noise. The forward chain is pre-
designed to transform the data distribution q0(x0) into a
simple Gaussian distribution qT (xT ) ≈ N (xT |0, σ2I) over
a time interval of T . Here, σ > 0, and the transition prob-
ability q(xt|xt−1) is defined as N (xt;

√
αtx0, (1 − αt)I),

where αt is a predetermined hyperparameter. By virtue of
the Markov property, we have

q(xt|x0) = N (xt|βtx0, σ
2
t I), (4)

with βt =
√
αt, σ2

t = 1− αt, and αt =
∏t

i=0 αi.
The transition kernel of the reverse chain is learned by

a neural network θ and aims to generate data from a Gaus-
sian distribution with the transition probability distribution
defined as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σ(xt, t)). (5)

For LDM [12], since the diffusion process occurs in the
latent space Z , Eq. (4) and Eq. (5) should be rewritten for
the latent representations z of LDM as follows:

q(zt|z0) = N (zt|βtz0, σ
2
t I), (6)

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σ(zt, t)). (7)

Denoising method for Gaussian Shading. DPM-
Solver [10] is a higher-order ODE solver [13], and in this
paper, we employ its second-order version during image
generation, whose denoising process is as follows,

vt−1 = tλ

(
λt−1+λt

2

)
ut−1 =

βvt−1

βt
zst − σvt−1

(
e

ht−1
2 − 1

)
ϵθ (z

s
t , c, t)

zst−1 = βt−1

βt
zst − σt−1

(
eht−1 − 1

)
ϵθ (ut−1, c, vt−1)

,

(8)
where λt = λ(t) = log

(
βt

σt

)
, tλ(·) represents the inverse

function of λt, ht−1 = λt−1 − λt, t = 1, 2, . . . , T , and c
indicates the prompt used for text-to-image generation.



Noise Methods

DwtDct [3] DwtDctSvd [3] RivaGAN [16] Tree-Ring [14] Stable Signature [5] Ours

None 0.825/0.881/0.866 1.000/1.000/1.000 0.920/0.945/0.963 1.000/1.000/1.000 1.000/1.000/1.000 1.000/1.000/1.000
JPEG 0/0/0 0.013/0.019/0.015 0.156/0.085/0.214 0.997/1.000/0.994 0.210/0.217/0.198 0.999/1.000/0.997

RandCr 0.982/0.967/0.952 1.000/0.998/0.999 0.868/0.878/0.891 0.997/1.000/1.000 1.000/0.998/0.993 1.000/1.000/1.000
RandDr 0/0/0 0/0/0 0.887/0.885/0.862 1.000/1.000/0.998 0.971/0.980/0.972 1.000/1.000/1.000
GauBlur 0/0.001/0.002 0.430/0.419/0.432 0.328/0.331/0.316 1.000/1.000/0.997 0/0/0 1.000/1.000/1.000

MedFilter 0/0.001/0.001 0.996/0.999/1.000 0.863/0.832/0.873 1.000/1.000/1.000 0.001/0/0 1.000/1.000/1.000
GauNoise 0.354/0.353/0.364 0.842/0.862/0.884 0.441/0.457/0.535 0/0.006/0.077 0.424/0.406/0.404 0.996/0.995/0.995
S&PNoise 0.089/0.160/0.102 0/0/0 0.477/0.411/0.431 0.972/0.986/0.994 0.072/0.078/0.052 1.000/0.998/0.997

Resize 0/0.005/0.008 0.985/0.977/0.983 0.850/0.886/0.887 1.000/1.000/1.000 0/0/0 1.000/1.000/1.000
Brightness 0.126/0.114/0.124 0.110/0.072/0.074 0.480/0.404/0.386 0.084/0.089/0.092 0.843/0.862/0.849 0.974/0.991/0.979
Average of
Adversarial 0.172/0.178/0.173 0.597/0.594/0.599 0.697/0.697/0.706 0.894/0.898/0.906 0.502/0.505/0.496 0.997/0.998/0.996

Table 1. The comparison in the detection scenario. Gaussian Shading demonstrates the best performance.

Noise
Methods

DwtDct [3] DwtDctSvd [3] RivaGAN [16] Stable Signature [5] Ours

None 0.8030/0.8059/0.8023 0.9997/0.9987/0.9987 0.9762/0.9877/0.9921 0.9987/0.9978/0.9949 0.9999/0.9999/0.9999
JPEG 0.5018/0.5047/0.5046 0.5197/0.5216/0.5241 0.7943/0.7835/0.8181 0.7901/0.7839/0.7893 0.9918/0.9905/0.9872

RandCr 0.7849/0.7691/0.7673 0.8309/0.7942/0.8151 0.9761/0.9723/0.9735 0.9933/0.9903/0.9883 0.9803/0.9747/0.9669
RandDr 0.5540/0.5431/0.5275 0.5814/0.5954/0.6035 0.9678/0.9720/0.9683 0.9768/0.9747/0.9736 0.9676/0.9687/0.9649
GauBlur 0.5000/0.5027/0.5039 0.6579/0.6466/0.6459 0.8323/0.8538/0.8368 0.4137/0.4110/0.4112 0.9874/0.9846/0.9858

MedFilter 0.5171/0.5243/0.5199 0.9208/0.9287/0.9208 0.9617/0.9585/0.9696 0.6374/0.6399/0.6587 0.9987/0.9970/0.9990
GauNoise 0.6502/0.6294/0.6203 0.7960/0.7950/0.8159 0.8404/0.9648/0.8776 0.7831/0.7766/0.7768 0.9636/0.9556/0.9592
S&PNoise 0.5784/0.6021/0.5845 0.5120/0.5267/0.5250 0.8881/0.8838/0.8634 0.7192/0.7170/0.7144 0.9406/0.9433/0.9385

Resize 0.5067/0.5184/0.5135 0.8743/0.8498/0.8630 0.9602/0.9731/0.9733 0.5278/0.5051/0.5177 0.9970/0.9975/0.9976
Brightness 0.5336/0.5097/0.5175 0.5346/0.5234/0.5016 0.8666/0.8496/0.8369 0.9276/0.9267/0.9204 0.9508/0.9623/0.9527
Average of
Adversarial

0.5696/0.5671/0.5622 0.6920/0.6868/0.6905 0.8986/0.9124/0.9019 0.7520/0.7472/0.7500 0.9753/0.9749/0.9724

Table 2. The comparison in the traceability scenario comparison. Although Gaussian Shading slightly underperforms Stable Signature in
the presence of Random Crop and Random Drop, considering all the noise, Gaussian Shading still demonstrates the best overall perfor-
mance.

Inversion method for Gaussian Shading. We note that
in DDIM [13], Song et al. proposed an inversion method
where they used the Euler method to solve the ODE [13]
and obtained an approximate solution for the inverse pro-
cess:

z′st+1 =
√
αtz

′
t+

(√
1− αt+1 −

√
αt − αt+1

)
ϵ (z′t, c, t) .

(9)
According to Eq. (9) it is possible to estimate the noise to
be added, which enables latent representation restoration.

2. Experimental Details and Additional Exper-
iments

2.1. Empirical check of the FPR

To test the actual FPR of Gaussian Shading, and to validate
the accuracy of Eq. (2) and Eq. (3), we performed water-
mark extraction on 50, 000 vanilla images from the Ima-
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(a) Theoretical FPR and measured
FPR in detection scenario.
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(b) Theoretical FPR and measured
FPR in traceability scenario.

Figure 1. Empirical check of the FPR.

geNet2014 [4] validation set. See Fig. 1, the theoretical and
actual measured curves are very close, indicating that the
theoretical thresholds derived from Eq. (2) and Eq. (3) can
effectively guarantee the actual FPR.



2.2. Details of Comparison Experiments

Watermarking methods settings. To ensure a fair com-
parison, we set the watermark capacity to 256 bits for Dwt-
Dct [3] and DwtDctSvd [3]. As RivaGAN [16] has a max-
imum capacity of only 32 bits, we retain this setting. The
capacity and robustness of Stable Signature [5] are deter-
mined by Hidden [19] trained in the first stage. However,
in our experiments, we find that Hidden with a capacity of
256 bits did not converge during training. Additionally, if
there are too many types of noise in the noise layer, Hid-
den does not converge either. As an alternative, we use the
open-source model of Stable Signature with a capacity of
48 bits1. During fine-tuning, we utilize 400 images from
the ImageNet2014 [4] validation set, with a batch size of 4
and 100 training steps. Tree-Ring [14] is a single-bit wa-
termark, and we only compare it in the detection scenario.
Since its Rand mode is more closely aligned with the con-
cept of performance-lossless, we adopt this setting.

The specific experimental results in both scenarios are
shown in Tab. 1 and Tab. 2, respectively. In the detection
scenario, the average TPR of Gaussian Shading remains
above 0.995 in the presence of noise, surpassing the sub-
par performance of Tree-Ring by approximately 0.1. In
the traceability scenario, the average bit accuracy of Gaus-
sian Shading exceeds 97% against noises, outperforming
the second-best method, RivaGAN, by around 7%. In both
scenarios, Gaussian Shading exhibits superior performance
compared to baseline methods.
The t-test for model performance. To measure the per-
formance bias introduced by the watermark embedding, we
apply a t-test to evaluate.

We first generate 50,000/10,000 images using SD V2.1
for each watermarking method, divided into 10 groups
of 5,000/1,000 images each. We then calculate the
FID [6]/CLIP-Score [11] for each group and compute the
average value µs. Similarly, we generate 50,000/10,000
watermark-free images using SD V2.1, test the FID/CLIP-
Score for 10 groups, and calculate the average value µ0.
For the FID, we randomly select 5000 images from MS-
COCO-2017 [8] validation set and calculate the scores us-
ing the aforementioned groups. For the CLIP-Score, we
utilize OpenCLIP-ViT-G [2] to compute the image-text rel-
evance.

If the model performance is maintained, then µs and µ0

should be statistically close to each other. Therefore, the
hypotheses are

H0 : µs = µ0, H1 : µs ̸= µ0. (10)

The statistic t-v is calculated as follows:

t-v =
|µs − µ0|√

S∗ · ( 1
ns

+ 1
n0

)
, (11)

1The GitHub Repository for Stable Signature

Methods Metrics

FID (t-value ↓) CLIP-Score (t-value ↓)

Stable Diffusion 25.23±.18 0.3629±.0006

DwtDct [3] 24.97±.19 (3.026) 0.3617±.0007 (3.045)
DwtDctSvd [3] 24.45±.22 (8.253) 0.3609±.0009 (4.452)
RivaGAN [16] 24.24±.16 (12.29) 0.3611±.0009 (4.259)
Tree-Ring [14] 25.43±.13 (2.581) 0.3632±.0006 (0.8278)

Stable Signature [5] 25.45±.18 (2.477) 0.3622±.0027 (0.7066)
Ours 25.20±.22 (0.3567) 0.3631±.0005 (0.6870)

Table 3. Experimental results of t-test.

where

S∗ =
1

ns + n0 − 2

[
(ns − 1)S2

s + (n0 − 1)S2
0

]
, (12)

ns and n0 represent the number of testing times, which are
both set to 10 in the experiments, and Ss and S0 represent
the standard deviations of the FID/CLIP-Score for water-
marked and watermark-free images, respectively.

A lower t-value indicates a higher probability that H0

holds. If the t-value is larger than a threshold, H0 is
rejected, and model performance is considered to have
been affected. The significance level for the test is set to
t-v0.05(ns + n0 − 2) = t-v0.05(18) ≈ 2.101. In terms of
the FID, the t-values of the baseline methods, as depicted in
Tab. 3, are all greater than the critical value t-v0.05(18) ≈
2.101, except for Gaussian Shading. Regarding the CLIP-
Score, Tree-Ring, Stable Signature, and Gaussian Shading
all exhibit competitive results. Note that the CLIP-Score
tends to measure the alignment between generated images
and prompts, while the FID is solely used to assess image
quality. In summary, these baseline methods demonstrate a
noticeable impact on the model’s performance in a statisti-
cally significant manner. On the other hand, Gaussian Shad-
ing achieved the smallest t-value, which indirectly confirms
its performance-lossless characteristic.

2.3. Details of Ablation Studies

Watermark capacity. The watermark capacity is deter-
mined by three parameters: channel diffusion factor fc,
height-width diffusion factor fhw, and embedding rate l. To
investigate the impact of these hyperparameters on water-
mark performance, we first fix l to find an optimal value
for fc and fhw. Experimental results are shown in Tab. 4.
Subsequently, we fix fc and fhw to search for the highest
possible l, and the corresponding experimental results are
presented in Tab. 5.

Considering all factors, we determine that the optimal
solution is fc = 1, fhw = 8, and l = 1, resulting in a
watermark capacity of 256 bits.
Sampling methods. Experimental results about sampling
methods under different noises are shown in Tab. 6, and all

https://github.com/facebookresearch/stable_signature


Noise
fc - fhw (k bits)

1-2 (4096) 4-1 (4096) 1-4 (1024) 4-2 (1024) 1-8 (256) 4-4 (256) 1-16 (64) 4-8 (64)

None 0.9413 0.9380 0.9985 0.9980 0.9999 0.9999 1.0000 1.0000
JPEG 0.7685 0.7588 0.9204 0.9087 0.9872 0.9866 0.9973 0.9989

RandCr 0.6735 0.6554 0.8177 0.7852 0.9669 0.9457 0.9981 0.9963
RandDr 0.6707 0.6785 0.8239 0.7754 0.9649 0.9444 0.9993 0.9985
GauBlur 0.7217 0.7205 0.8846 0.8832 0.9858 0.9881 0.9996 0.9998

MedFilter 0.8151 0.8104 0.9637 0.9589 0.9990 0.9987 0.9999 1.0000
GauNoise 0.7051 0.6933 0.8502 0.8366 0.9592 0.9539 0.9932 0.9933
S&PNoise 0.6711 0.6661 0.8100 0.7987 0.9385 0.9366 0.9933 0.9914

Resize 0.7904 0.7861 0.9478 0.9438 0.9976 0.9976 0.9999 0.9999
Brightness 0.7558 0.7455 0.8737 0.8619 0.9527 0.9526 0.9829 0.9796
Average of
Adversarial

0.7302 0.7238 0.8769 0.8614 0.9724 0.9671 0.9959 0.9953

Table 4. Bit accuracy of Gaussian Shading with different factors fc and fhw, where l = 1.

Noise
l (k bits)

2 (512) 3 (768) 4 (1024) 5 (1280)

None 0.9918 0.9502 0.8807 0.8188
JPEG 0.9112 0.8301 0.7635 0.7165

RandCr 0.7766 0.7343 0.6937 0.6586
RandDr 0.8111 0.7545 0.7047 0.6708
GauBlur 0.8730 0.7820 0.7188 0.6783

MedFilter 0.9381 0.8534 0.7823 0.7311
GauNoise 0.8572 0.7854 0.7192 0.6750
S&PNoise 0.8261 0.7478 0.6978 0.6546

Resize 0.9243 0.8397 0.7740 0.7188
Brightness 0.8656 0.8190 0.7480 0.7128
Average of
Adversarial

0.8648 0.7940 0.7332 0.6907

Table 5. Bit accuracy of Gaussian Shading with different embed-
ding rates l, where fc = 1 and fhw = 8.

of them exhibit excellent performance with an average bit
accuracy of approximately 97% against noises.

2.4. Additional Visual Results

See Fig. 2 and Fig. 3, we present the visual results of dif-
ferent watermarking methods on prompts from the MS-
COCO-2017 [8] validation set. From the residual images in
Fig. 2, it can be observed that DwtDct [3], DwtDctSvd [3],
RivaGAN [16], and Stable Signature [5] introduce notice-
able watermark artifacts, leading to a degradation in model
performance. As shown in Fig. 3, although Tree-Ring [14]
watermark is imperceptible, its embedding may directly im-
pair the image quality. Additionally, it may also introduce
changes in the object count and spatial relationships, caus-
ing inconsistency with the prompt. In the case of Gaussian
Shading, as long as the latent representations where the wa-
termark is mapped remain consistent with that of the origi-

Noise
Sampling Methods

DDIM
[13]

UniPC
[18]

PNDM
[9]

DEIS
[17]

DPMSolver
[10]

None 0.9999 1.0000 1.0000 0.9999 0.9999
JPEG 0.9864 0.9797 0.9840 0.9849 0.9872

RandCr 0.9758 0.9395 0.9713 0.9507 0.9669
RandDr 0.9778 0.9642 0.9641 0.9990 0.9649
GauBlur 0.9854 0.9818 0.9886 0.9840 0.9858

MedFilter 0.9990 0.9983 0.9991 0.9991 0.9990
GauNoise 0.9710 0.9264 0.9621 0.9518 0.9592
S&PNoise 0.9302 0.9366 0.9363 0.9424 0.9385

Resize 0.9954 0.9952 0.9980 0.9977 0.9976
Brightness 0.9141 0.9431 0.9452 0.9338 0.9527
Average of
Adversarial

0.9706 0.9628 0.9721 0.9715 0.9724

Table 6. Bit accuracy of Gaussian Shading with different sampling
methods.

nal image, no changes occur in the generated image.
To further showcase the visual performance of Gaussian

Shading, we present the visual results at multiple embed-
ding rates ranging from 1 to 5 on prompts from Stable-
Diffusion-Prompt2. See Fig. 4, with the increase in water-
mark length, the model maintains a good generation quality.
Moreover, the diversity and randomness of watermarked
images indirectly reflect the performance-lossless charac-
teristic of Gaussian Shading.

2Stable-Diffusion-Prompts

https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts


Original

DwtDct
[3]

DwtDctSvd
[3]

RivaGAN
[16]

Stable
Signature

[5]

Ours

Figure 2. Additional visual results of different watermarking methods, excluding Tree-Ring, on prompts of the validation set of MS-
COCO-2017, at resolution 512. All methods are applied with the same input latent representations. Comparison with Tree-Ring is on the
next page.



Prompt Original Tree-Ring [14] Ours

A bird is sitting
on a bowl

of birdseed.

A man holding
open an oven door

in a kitchen.

A skillet on
a stove with

vegetables in it.

This is two birds
pecking at the
remnants of a
burger at an

outdoor restaurant.

Many surfboards
are propped
against a rail
on the beach.

Figure 3. Visual comparison between Tree-Ring and Gaussian Shading on prompts of the validation set of MS-COCO-2017, at resolution
512. In contrast to the original model and our Gaussian Shading, Tree-Ring alters the distribution of the latent representations, potentially
resulting in the generation of images characterized by semantic inconsistencies or diminished quality. This figure illustrates an instance of
such a case, where the Gaussian Shading preserves t.he distribution, thereby avoiding this issue.



Red dead redemption 2, cinematic view, epic sky, detailed, concept art, low angle, high detail, warm lighting, volumetric,
godrays, vivid, beautiful, trending on artstation, by jordan grimmer, huge scene, grass, art greg rutkowski.

Official Portrait of a smiling WWI admiral, male, cheerful, happy, detailed face, 20th century,
highly detailed, cinematic lighting, digital art painting by greg rutkowski.

Post apocalyptic city overgrown abandoned city, highly detailed, art by Range Murata, highly detailed,
3d, octane render, bright colors, digital painting, trending on artstation, sharp focus.

A female master, character art portrait, anime key visual, official media, illustrated by wlop,
extremely detailed, 8 k, trending on artstation, cinematic lighting, beautiful.

Cat looking at beautiful colorful galaxy, high detail, digital art, beautiful , concept art,fantasy art, 4k.

Figure 4. Additional visual results of Gaussian Shading on generated images at resolution 512. We utilize five prompts in Stable-Diffusion-
Prompt and generate images at five different embedding rates l, ranging from left to right as l = 1, 2, 3, 4, 5.
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