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Figure I. Training data for Fig. 6 of the main text. The first N
samples in rows are used for the N -shot task.

I. Dataset Details

FS-DART. Our FS-DART is a synthetic dataset based on
the DART [3] hand model. We create 100 hand identities
with a variety of skin colors and hand shapes. In addition,
special hand features such as scars, moles, and nail pol-
ish are also included in hand textures. As for hand poses,
we capture real hand videos and extract pose parameters
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Figure II. Evaluation data of FS-DART from 24 viewpoints.

with MobRecon [1] for training data creation. As shown
in Fig. I, our training samples contain unconstrained casual
hand poses. Note that self-occluded poses are not involved
so that few-shot data can exhibit sufficient information for
the hand reconstruction task.

In terms of evaluation, we assess the effectiveness of our
method under the zero hand pose to unveil the performance
in shape and texture reconstruction. Referring to Fig. II, the
hand in the zero pose is rendered from 24 sphere-distributed
viewpoints, and our model can generate corresponding re-
sults for metric computation.

FS-XHumans. Our FS-XHumans dataset is built on re-
ally captured XHumans [6], which is a 3D scan dataset
with 19 actual human identities. For each individual, the
XHumans provide 3D scans of motion sequences, includ-
ing diverse body poses, hand gestures, and facial expres-
sions. Thereby, we select 8 scans from a sequence to pro-
duce training data. During data selection, we ensure the di-
versity of poses and expressions for our training samples, as
illustrated in Fig III. Due to the absence of canonical-pose
samples, we opt for a scan closely resembling the A-pose to
generate testing samples from 24 sphere-distributed view-
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a sks man, black short hair, serious, sks white v neck t shirt, sks gray 
rolled up jeans pants, sks black loafers shoes, standing

a sks man, brown bald hair, serious, sks black t shirt, sks blue shorts pants, 
sks black black tennis shoes, standing

a sks woman, brown short hair, caucasian, sks yellow v neck shirt, sks red 
rolled up jeans pants, sks black black and white sneakers shoes, standing

a sks man, brown short hair, serious, sks black long sleeve sweater, sks 
brown plaid shorts pants, sks black adidas sneakers shoes, standing

Figure III. Training data for Fig. 7 of the main text. The first N
samples in rows are used for the N -shot task. The textural captions
are only employed by TeCH.

points for metric computation, as depicted in Fig. IV.
It is worthwhile to note that the training data do not have

to strictly follow viewpoints in Figs. I and III. We use this
viewpoint configuration as an example because it is an effi-
cient setting for few-shot data acquisition. The viewpoints
of arbitrarily captured data can be obtained through para-
metric geometry estimation [1, 5]. From the perspective
of real-world applications, our data setup is reasonable be-
cause obtaining data similar to Figs. I and III in practical
capture scenarios is straightforward.

II. Implementation Details

Tetrahedral grid. We produce a tetrahedral grid in a
1283-size cube using 277,410 vertices and 1,524,684 tetra-
hedra. Positional displacements and an SDF value are at-
tached to vertices, and we explicitly treat them as optimiza-

Figure IV. Evaluation data of FS-XHumans from 24 viewpoints.

tion parameters without resorting to neural networks.

Texture field. To predict RGB values, we design texture
filed C using a 3-layer MLP network with a hidden dimen-
sion of 64 and a hash positional encoding with a maximum
resolution of 2048 and 16 resolution levels. Specifically,
the triangle mesh M extracted from DMtet is deformed to
match the posed human space aligned with the training im-
ages. Each pixel is mapped onto the deformed mesh sur-
face, represented by its barycentric coordinates. Then, we
query points Ps on the canonical triangle mesh M with the
barycentric coordinates, and the rendered image can be ob-
tained with Î = C(Ps).

Optimization details. Our experiments are conducted on
a NVIDIA A100 GPU. The whole framework is trained in
an end-to-end manner.

For the body reconstruction task, the optimization com-
prises 17,000 iterations. The learning rate starts at 0.05 and
is decreased by a factor of 0.1 at the 7,500th and 15,000
steps. The optimization process for a human body takes ap-
proximately 4 hours.

In terms of the hand reconstruction task, the optimization
requires 2,000 iterations with a learning rate of 0.05. The
optimization of a hand identity only costs about 10 minutes.

III. Details of Compared Methods

Due to the absence of existing methods designed for few-
shot dynamic human reconstruction, we compare HaveFun
with a video-based approach and a one-shot static pipeline.

SelfRecon. In contrast to our data configuration, SelfRe-
con [4] is designed for self-rotated video data. Despite



this difference, SelfRecon can perform human reconstruc-
tion under our data setup. That is, few-shot unconstrained
images used in our work can be treated as key frames of
a video. Hence, it is reasonable to compare our approach
with SelfRecon. To this end, we acquire officially released
implementation codes from https://github.com/
jby1993/SelfReconCode and re-implement the part
of the dataset for the adaptation of few-shot image input.
In addition, we set a batch size of 2 and a training step
of 15,000. The training process costs about 12 hours for
a human individual. Furthermore, we also train a SelfRe-
con model following its original data setting. That is, we
generate video data consisting of 100 frames, containing
uniformly self-rotated body images, as shown in “SelfRe-
con (100-shot)” in Fig. 7 of the main text. The SelfRecon
results are also displayed in our suppl. video. As shown, the
instability in geometry and texture is evident across differ-
ent viewpoints due to the employed training samples with
highly articulated motion and the intrinsic mechanism of
viewpoint-dependent color prediction.

For the hand experiment, we integrate MANO articula-
tion into SelfRecon and adopt the same settings as the body
experiment.

TeCH. TeCH is a one-shot human reconstruction method
utilizing SDS guidance, similar to the technical pipeline in
our HaveFun framework. For comparison, we employ the
official implementation from https://github.com/
huangyangyi/TeCH. TeCH requires 5 stages to op-
timize a human avatar, including VQA caption, Dream-
Booth fine-tuning, geometry optimization, geometry post-
processing, and texture optimization. The captions used for
text-guided SDS loss are shown in Fig III. In addition, we
argue that the stage of geometry post-processing is tricky
due to the replacement of the hand shape with the SMPLX
hand mesh. That is, the hand is reconstructed using SM-
PLX rather than TeCH. For a fair experimental setup, we
omit the geometry post-processing and jointly optimize the
complete geometry and texture. All other settings adhere to
the original TeCH report, and it takes approximately 6 hours
to generate a human avatar.

As the VQA caption of hands is unexplored, we do not
include the comparison of TeCH in the hand task.

IV. More Results

Effects of normal and depth losses. Referring to Table I
and Fig. V, normal and depth losses give rise to instructive
effects on human avatar reconstruction. Nevertheless, re-
moving depth loss only leads to a minor performance drop.
Due to the often inaccurate estimates of monocular depth,
depth supervision is optional in real-world applications, and
the HaveFun framework can present human avatars without
depth labels.

Lnormal Ldepth PSNR ↑ SSIM ↑ LPIPS ↓
4-shot FS-XHumans

✓ ✓ 25.64 0.9627 0.0347
✓ 25.08 0.9601 0.0352

✓ 24.30 0.9581 0.0404
23.85 0.9575 0.0466

Table I. The effects of normal and depth losses.
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Figure V. The effects of normal and depth losses.

SDS loss for the 8-shot task. Table II shows the effect
of SDS loss in the 8-shot FS-XHumans experiment, which
also supports the conclusion of the main text.

Side-view results of the 4-shot setting. In Fig. 4 of the
main text, we use a side-view for 2/8-shot tasks to highlight
the details of hair reconstruction and another view for the
4-shot task to unveil the SDS effect for unseen regions. To
fully present these experiments, we supplement 4-shot side-
view results in Fig. VI for comparison.

https://github.com/jby1993/SelfReconCode
https://github.com/jby1993/SelfReconCode
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Method PSNR ↑ SSIM ↑ LPIPS ↓
λsds = 0 26.45 0.9604 0.0343

λsds = 0.01 26.82 0.9674 0.0301
λsds = 1 25.40 0.9570 0.0375

Table II. The SDS effects on the 8-shot FS-XHumans experiment.
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Figure VI. Comparison of body reconstruction with few-shot data

Reference Guidance samples from Zero123

Figure VII. Visualization of Zero123 guidance

The Zero123 guidance. As shown in the Fig. VII, the
purely 2D method Zero123 produces low-quality guidance
images (e.g., face). Our model achieves performance be-
yond Zero123 because of a 3D-aware representation and
depth/normal supervision.

More results in dynamic demonstration. Please refer
to the project page https://seanchenxy.github.
io/HaveFunWeb for dynamic results.

(a) (b) (c) (d)

Figure VIII. Demonstration of limitations.

V. Limitations and Future Works

Expression control. To handle varying expressions in
training data, we transform expression blendshapes defined
by SMPLX [5] into our framework. Nevertheless, the
blendshapes are not accurate enough, harming the precision
of expression control. The impact on portrait reconstruction
is explained in Fig. 7 of the main text. To tackle this diffi-
culty, we will introduce advanced expression control meth-
ods (e.g., [7]) to the HaveFun framework.

Disentanglement of albedo and illumination. Our
framework generates human texture with mixed albedo and
illumination, leading to errors in texture reconstruction. As
shown in Fig. VIII(c), some black patterns appear on the
top of fingers, which is caused by shadows in the train-
ing data. That is, due to a lack of awareness of lighting,
the SDS guidance tends to generate shadow-like patterns
in unseen regions. To address this issue, we plan to intro-
duce illumination-aware designs (e.g., [2]) to the HaveFun
framework.

Full body integration with part-wise few-shot data.
This paper streamlines the data collection process and
proves that few-shot unconstrained images are cheaper data
sources for human avatar creation. In addition, we demon-
strate that such a cheap data source is effective for the hu-
man body and hand. Nevertheless, we have not used the
HaveFun framework for expressive portrait reconstruction.
On one hand, because of the aforementioned limitations on
facial expression, the HaveFun framework has difficulty in
precise expression modeling. In addition, enhancing the ac-
curacy of expression control is far from sufficient for mod-
eling the portrait. For example, because of the lack of
inner-mouth regions in the few-shot training data, the avatar
is unable to perform a behavior with an open mouth (see
Fig. VIII(a)). Therefore, we will explore a few-shot uncon-
strained data setup for portrait reconstruction. Finally, the
portrait, body, and hand can be reconstructed from part-wise
few-shot data and integrated into a full representation for an
expressive human avatar.

https://seanchenxy.github.io/HaveFunWeb
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Errors caused by data pre-processing. As illustrated
in Fig. VIII, inaccurate image matting results in the in-
troduction of background color to the human texture
(Fig. VIII(b)). Additionally, artifacts such as the top of
thumb could come from an inaccurate MANO/SMPLX fit-
ting (Fig. VIII(d)).
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