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A. Related Works
Explicit-shape-based approaches rely on parametric hu-
man body models, e.g., SCAPE [4], SMPL [28], SMPL-
X [41] to reconstruct 3D humans. Many works [1, 2, 7,
30, 52, 65] introduce the concept of ”body+offset”, where
clothing geometry is represented as 3D displacements on
top of the SMPL models. For example, MGN [7] proposes a
top-down objective function to align the segmentation maps

of predicted garments and SMPL. To improve the expres-
sion ability of garment templates and support more topolo-
gies, BCNet [23] disentangles the skinning weight of the
garment from the body mesh. Different from the repre-
sentation of ”body+offset”, alternative parametric methods
adapt vertex deformations on body mesh to capture cloth
details. For example, HMD [65] presents the hierarchical
deformation framework to recover a detailed human body
shape from an initial SMPL mesh in a coarse-to-fine man-
ner. The advantage of these methods lies in their compati-
bility with the current animation pipeline and ease of control
through pose parameters. However, they have limitations
in modeling various and complex clothing topologies due
to the inherent topology constraints imposed by parametric
models.

Implicit-function-based approaches aims to recon-
struct detailed surfaces with arbitrary topology [12, 32, 37].
This is achieved through the implicit functions, which can
be used to approximate 3D representation such as occu-
pancy fields or signed distance fields. PIFu [44] is the
pioneering method that utilizes pixel-aligned features for
the regression of the occupancy field of human shape. PI-
FuHD [45] incorporates a multi-level architecture and ad-
ditional normals to improve the geometric details of PIFu.
However, these two methods lack constraints on the global
topology of humans, leading to performance degradation in
challenging poses. Many works attempt to address this is-
sue in different ways, such as introducing a coarse shape
of volumetric humans [18], leveraging depth information
of RGB-D images [14]. Unlike the above methods, alter-
native implicit-function-based methods learn the latent rep-
resentation of clothing to control the generation of cloth-
ing [13, 27, 34]. For example, SMPLicit [13] reconstructs
the clothed human by optimizing the latent space of the
clothing model to control clothing cut and style. However,
the reconstructed human still does not align well with the
input image and lacks geometric details.

Explicit shape & Implicit function approaches lever-
age human body models and implicit functions to har-
ness the benefits of both worlds [8, 9, 21]. For instance,
PaMIR [64] regularizes the free-form implicit function by
incorporating semantic features from the SMPL model.
ICON[53], on the other hand, regresses shapes from locally
queried features to generalize to unseen poses in in-the-wild
photos. ECON [54] combines estimated 2.5D front and
back surfaces with an underlying 3D parametric body for
improved reconstruction. To further address the variations
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Figure A. Illustration of the spatial interaction module A.

in distribution among different spatial points, D-IF [55] in-
troduces a distribution to express the uncertainty of cloth-
ing. However, these approaches may fall short when per-
forming highly detailed and robust reconstruction. Specifi-
cally, PaMIR is sensitive to global pose and lacks robustness
to unseen poses [53]. ECON is prone to reconstruct com-
bined or broken limbs due to the need to complete different
surfaces. ICON and D-IF tend to fail in reconstructing de-
tailed parts such as elbows and wrinkles in clothes (see Fig.
1.To promote a detailed reconstruction, our HiLo uses a
progressive high-frequency function to improve the expres-
sion of reconstructed details. At the same time, HiLo uses
the low-frequency-based spatial interactive implicit func-
tion to enhance robustness to unseen shapes and poses.

B. More Details of our HiLo
B.1. Novelty and differences from previous methods

[18, 45, 53, 64]

Clothed human reconstruction from a single RGB image is
challenging due to limited views and the absence of depth
information. Most recent methods [53–55, 64] rely on para-
metric body models estimated from RGB images, but they
may incur an oversmooth problem due to the underutiliza-
tion of high-frequency (HF) details. Moreover, these meth-
ods can be sensitive to noises incurred by parametric body
model estimation for challenging poses.
To address the above issues, we first enhance HF informa-
tion from the body models to describe geometry details.
To this end, we design a progressive growing function to
achieve accurate reconstruction while alleviating the con-
vergence difficulty associated with HF information. More-
over, we verify low-frequency (LF) information from the
parametric model is insensitive to noise. Considering this,
we establish a spatial interaction function to leverage the
(LF) for robustness reconstruction.

B.2. Details on Spatial Interaction MLP

Our spatial interaction implicit function takes F1
c that con-

tains our high-frequency SDF H(s;β), low-frequency voxel

grids feature M3D
V (p), and normal features Fn(p) as input

and infers occupancy fields Ô.

  \label {eqn:ourmlp} &\mathbf {F}_{c}^1=[\mathcal {H}(s;\beta ), \bodyMesh ^{3D}_{\mathcal {V}}({\mathbf {p}}), \mathbf {F}_{\mathrm {n}}(\mathbf {p})]\\ &{\phi _{si}}(\mathbf {F}_{c}^1) \to \mathcal {\hat {O}},~~\phi _{si}(\cdot )=\mathcal {A}^{N+1} \circ T^{(N+1)} \circ \cdots \circ \mathcal {A}^{1}(\cdot ) \circ T^{(1)}.
 

 



                

(B)

As shown in Fig. A, take the 1-th layer of ϕsi as an example,
we use attention module [20, 25] A1 that takes in the M3D

V
and F

(1)
c and output a spatial interaction feature map F

(1)
I .

Specifically, We first extract a global spatial features F(j)
g of

the M3D
v via a 3D Convolution block and a sigmoid func-

tion. We achieve the spatial interaction process of different
voxels through the equation F

(j)
c × F

(j)
g → F

(j)
I . After ob-

taining the F
(1)
I , we fed it to the first full-connected layer

T (1) to obtain F2
c .

B.3. Future work and limitations.

Q5. Future work and limitations. Since HiLo is trained
on orthographic views, it struggles with strong perspectives,
causing asymmetrical limbs or unrealistic shapes. This
issue is worth studying in the future.

C. More Experimental Details
We demonstrate the inference details of our HiLo in Alg. 1.
The 3D point set is obtained via a coarse-to-fine manner as
illustrated in Sec. C.3.

C.1. Implementation Details

Especially, the dimension of HFSDF, batch size b, sam-
pled points number n, and variable dimension channels C
of the spatial interaction module are set to 10, 2, 8000,
[39, 512, 256, 128, 1] respectively. The training and testing
phases are performed on a single NVIDIA GeForce RTX
3090 GPU. See more details on the training and inference
of HiLo in the appendix.

C.2. More details on Metrics

Specifically, P2S denotes the distance between randomly
sampled points from a ground truth mesh to its nearest sur-
face on a reconstructed mesh. Chamfer is regarded as a
bidirectional P2S distance, which computes the distance
between randomly sampled points from the reconstructed
mesh to its nearest surface on the ground truth mesh. Nor-
mals is calculated by measuring L2 error between nor-
mal images rendered from reconstructed and ground-truth
meshes from fixed viewpoints.

C.3. 3D Points Sampling

During training, we randomly query 3D points inside, out-
side, and around the SMPL-X surface. During inference,



Algorithm 1: The inference pipeline of HiLo.
Input: Sampled 3D points {p}ni=1, an RGB image I of

human, an spatial interactive implicit function ϕsi,
a parametric body model estimation net Ep, a
progressive high frequency function H(· ;β), a 3D
CNN f3D , a mesh voxelization operation V , a
marching cubes operation MC.

Output: Triangular mesh of the human.
1 Obtaining parametric body model SMPL-X M with

Ep(I).
2 With M, obtaining the global voxel grid M3D

v using
f3D(V(M)).

3 for pi in {p}ni=1 do
4 Generating SDF s w.r.t. pi using Eqn. 1.
5 Using H(· ;β) to enhance the SDF s resulting in

point-wise progressive high-frequency SDF
H(s;β).

6 Obtaining the local voxel grid of V by indexing M3D
v

with pi, resulting in V(pi).
7 Get 3D normal features Fn(pi) w.r.t. pi following

ICON.
8 Concatenate H(s;β), V(p), Fn(pi), getting F 1

c .
9 Using ϕsi to obtaining occupancy field Ô(pi) from

F 1
c and M3D

v , following Eqn. (7).
10 end
11 Obtaining the triangular mesh of the human using

marching cubes algorithm with MC(Ô).

we define the coordinates of 3D points through an initial
3D grid, and iteratively interpolate the 3D grid to sample
3D points in a more detailed scale.

C.4. Details of Variant Methods

C.4.1 Revisit Existing Methods

PIFu. To reconstruct a 3D-clothed human, PIFu proposes
Pixel-Aligned Implicit Functions to predict whether each
3D point is inside or outside a human surface. Specifically,
PIFu learns a 2D feature map from a single image I using
a 2D image encoder via f2D(I) → F2D

I . To query local
pixel-aligned features on F2D

I , PIFu projects 3D points p
to a 2D plane with π operation and uses bilinear interpola-
tion operation S to sample the local features from F2D

I . The
local feature f2D(I)(p) and the Z coordinate of p (i.e., pz)
are concatenated and fed to a multi-layer perceptron (MLP)
to obtain the final prediction Ô. The pipeline of PIFU fol-
lows an equation:

  \mathrm {PIFu} :\phi (f_\text {\twoD }(\mathcal {I})(\mathbf {p})), \mathbf {p}_z) \rightarrow \hat {\mathcal {O}}(\mathbf {p}))      (C)

where f2D denotes the 2D image encoder. Although PIFu is
able to reconstruct high-quality human mesh for commonly
seen poses such as walking and standing, PIFu often fails
when encountering severe occlusions and large pose vari-
ations due to insufficient information from a single image

only.
PaMIR. To further regulate the reconstruction process,
PaMIR introduces the strengths of parametric body mod-
els by learning a parametric-aligned 3D feature volume ac-
quired from a parametric body model, i.e., SMPL. Specif-
ically, PaMIR estimates a SMPL model M from the given
single image I , converting M to occupancy volume with
mesh voxelization V and encoding the volume with 3D con-
volutional neural networks f3D. Given the voxel-aligned
volume features f3D(V(M)),p)) and the corresponding
pixel-aligned feature vector f2D(I)(p)) of p, PaMIR learns
an implicit function to predict whether p is inside or out-
side a human surface. The pipeline of PaMIR follows the
equation:

  \mathrm {PaMIR} : \phi ((f_\text {\twoD }(\mathcal {I})({\mathbf {p}})), \ourvoxel ({\mathbf {p}}))\rightarrow \hat {\mathcal {O}}(\mathbf {p}))  
    (D)

Although PaMIR typically feeds their implicit-function
module with features of a global 2D image or 3D voxel en-
coder, but these features are sensitive to global pose [53].
ICON. To improve the robustness to out-of-distribution
poses, ICON replaces the global encoder of existing meth-
ods with a more local scheme: using signed distance func-
tion (SDF), barycentric surface normal and local normal
features of SMPL regarding p. The pipeline of ICON fol-
lows the equation:

  \mathrm {ICON} : \phi (s(\mathbf {p}), \mathcal {F}_{\mathrm {n}}) \rightarrow \hat {\mathcal {O}}(\mathbf {p}))      (E)

where Fs(p) is the signed distance from a query point p to
the closest body point Pb ∈ M, and Fb

n is the barycentric
surface normal of Pb, and F c

n is a normal vector. We denote
the concatenation of Fb

n (p), Fc
n(p) as Fn.

D-IF. To alleviate the uncertainty in the process of recon-
structing a clothed human, D-IF follows ICON to estimate
the occupancy field of the clothed human based on the equa-
tion:

  \begin {aligned} \mathrm {D\text {-}IF}:~ &\hat {\mO }_f = \hat {\mO }_c + \phi _r(\hat {\mO }_c \oplus \mF _{7 \mathrm {D}} \oplus P_\varphi (\mF _{7 \mathrm {D}}))\\ &\mF _{7D}=s \oplus \mathcal {F}_{\mathrm {n}},~ \hat {\mO }_c=\phi (\mF _{7 \mathrm {D}}) \\ & \hat {\mO }_c(p) \sim P_{\varphi }\left (F_{7 \mathrm {D}}(\bp )\right )=\mathcal {N}\left (\mu _{\varphi }(\bp ), \sigma _{\varphi }(\bp )\right ) \end {aligned}          

    

 









 (F)

where ⊕ denotes concatenate operation, Pφ(F7D(p) is a
Gaussian distribution.



C.5. Variant Methods

Based on the grasp of existing methods, we introduce the
variant methods in our experiments.

  \begin {aligned} &\mathrm {ICON}_{\mathrm {w}~\mathcal {M}_v^{3D}(p)}: \phi (s(\bp ), \mathcal {F}_{\mathrm {n}}, \ourvoxel (\bp )) \rightarrow \hat {\mathcal {O}}(\mathbf {p}))\\ &\mathrm {D\text {-}IF}_{\mathrm {w}~\mathcal {M}_v^{3D}(p)}: \phi (\mF _{7 \mathrm {D}}, \ourvoxel (\bp ))+ \phi _r(\hat {\mO }_c \oplus \mF _{7 \mathrm {D}} \oplus P_\varphi (\mF _{7 \mathrm {D}})) \\ &\mathrm {\sexyname }_{\mathrm {w/o}~\mathcal {M}_v^{3D}(p)}: \ourmlp (\oursdf , \mathcal {F}_{\mathrm {n}}) \rightarrow \hat {\mathcal {O}}(\mathbf {p})) \\ & \mathrm {\sexyname }_{\mathrm {w/o}~\mathcal {H}_s(p;\beta )} : \ourmlp (s(\bp ), \mathcal {F}_{\mathrm {n}}, \ourvoxel (\bp )) \rightarrow \hat {\mathcal {O}}(\mathbf {p})) \\ & \mathrm {\sexyname }_{\mathrm {w}~\mathcal {H}_s(p)} : \ourmlp (\mH (s), \mathcal {F}_{\mathrm {n}}, \ourvoxel (\bp )) \rightarrow \hat {\mathcal {O}}(\mathbf {p})) \\ &\mathrm {\sexyname }_{\mathrm {w/o}~ \mathcal {\phi }_{si}}: \phi (\oursdf , \mathcal {F}_{\mathrm {n}}, \ourvoxel (\bp )) \rightarrow \hat {\mathcal {O}}(\mathbf {p}))\\ & \mathrm {\sexyname }_{\mathrm {w/o}~ \mathcal {H}(s;\beta )~\mathrm {w/o}~ \mathcal {\phi }_{si}}: \phi (s(\bp ), \mathcal {F}_{\mathrm {n}}, \ourvoxel (\bp )) \rightarrow \hat {\mathcal {O}}(\mathbf {p})) \end {aligned} 
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D. More Details on Datasets

Our data-split configuration aligns with the protocols out-
lined by ICON and D-IF. We conduct experiments on the
basis of two distinct settings.
• Setting 1: Train on Thuman2.0, test on CAPE. For this

setting, we employ 500 scans from Thuman2.0 for train-
ing, accompanied by 5 scans for validation. To assess
reconstruction accuracy on CAPE, we utilize 150 scans,
further categorized into challenging poses (”CAPE-NFP”
- 100 scans) and fashion poses (”CAPE-FP” - 50 scans).
To emulate diverse viewpoints during testing, RGB im-
ages are synthesized by rotating a virtual camera around
the textured scans at angles of 0◦, 120◦, 240◦.

• Setting 2: Train and test on the same dataset. In this sce-
nario, when training and testing on Thuman2.0, we em-
ploy 500 scans for training and reserve 20 scans for test-
ing. Conversely, when training and testing on CAPE, we
utilize 120 scans for training, 5 for validation, and 25 for
testing.

E. More Experiments

E.1. More results on SMPL-X noise.

SMPL-X Model. Skinned Multi-Person Linear-Expressive
model (SMPL-X) [41] represents human body shapes
and poses in a compact and parametric manner. The
core idea behind SMPL is to use a linear combination
of body shape parameters and joint rotations to repre-
sent a 3D human body model with N=10475 vertices
and K=54 joints. Specifically, SMPL-X is defined by
M(θ, β, ψ) : R|θ|×|β|×|ψ| → R3N , where θ ∈ R3(K+1)

represents the pose parameter, β ∈ R|θ| is the shape
parameter, and ψ denotes the facial expression parameters,
and K denotes the number of body joints in addition to a
joint for global rotation. By adjusting θ, β, ψ, SMPL-X is
able to represent a wide variety of human body shapes and

poses. See [41] for more details.

Adding noise to SMPL-X Model. We further evaluate
the robustness ability of our HiLo against various levels
of noise in the shape parameters θs and pose parameters
θp in parametric models. Our experimental setting follows
ICON, which samples a scalar value µ ∼ N (0, 1), scaling
the noise with two predefined parameters s1, s2 to repre-
sent various levels of noise. The above procedure follows
the equation:

  \begin {aligned} \theta _s+=s_1 \ast \mu \\ \theta _p+=s_2 \ast \mu \end {aligned}    
   

(H)

We set {s1, s2} to {0.1, 0.1}, {0.2, 0.2}, {0.3, 0.3},
{0.4, 0.4}, {0.5, 0.5} for a thorough study on the robustness
of our HiLo and our baselines. Since we have provided the
results w.r.t. {s1, s2} ∈ [{0.1, 0.1}, {0.2, 0.2}, {0.5, 0.5}]
in the main draft, we report the remaining results in Tab. A

E.2. More error measurements to assess robustness.

To further evaluate the robustness of our HiLo, we cal-
culate Chamfer, P2S and Normals between SMPL-X and
reconstructed body models. From Tab. B, our HiLo shows
better robustness than existing methods.

Table B. Robustness on CAPE.

Methods Chamfer (↓) P2S (↓) Normals (↓)
PIFu 4.0550 3.3971 0.1915

PIFuHD 6.1345 5.2692 0.2017
PaMIR 0.9800 1.0132 0.0714
ICON 0.8198 0.7799 0.0617
D-IF 0.9111 0.8751 0.0666

ECON 0.9083 0.8701 0.0723
HiLo (Ours) 0.6784 0.6580 0.0480

E.3. Is HiLo efficient and light-weighted?

Comparison of inference and training time. In Tab. C,
we compare the inference efficiency by the average infer-
ence time to reconstruct 200 single-view images. The in-
ference procedures of PaMIR, ICON, D-IF, and HiLo con-
sist of SMPL-X fitting and cloth refinement. Differently,
PIFu’s inference procedure only includes cloth refinement,
and ECON includes SMPL-X fitting and Poisson Surface
Reconstruction (PSR). In terms of inference efficiency, it
is evident that our HiLo demonstrates a competitive per-
formance with PaMIR, ICON and D-IF. However, ECON
depends on time-consuming PSR to complete human shape,
and all other methods show superior performance to it when
inference. We measure training efficiency by the average
time spent on 10 epochs on the Thuman2 dataset. D-IF
needs to train two MLPs and therefore takes more time. We
achieve competitive training efficiency with PIFu, PaMIR
and ICON even though we introduce high-frequency and



SMPL-X Noise=0.3 SMPL-X Noise=0.4

Methods M3D
v CAPE-FP CAPE-NFP CAPE CAPE-FP CAPE-NFP CAPE

ICON ✗ 4.5134 4.7091 4.7069 5.5864 5.9810 5.9015
ICON w M3D

v ✓ 4.2250 4.1215 4.2697 3.3824 3.4722 3.3897

D-IF ✗ 3.2462 3.6933 3.5700 3.2462 3.6933 3.5700
D-IF w M3D

v ✓ 1.2912 1.8222 1.5995 1.2912 1.8222 1.5995

HiLo w/o M3D
v ✗ 3.7060 4.3281 4.1071 4.4435 4.8639 4.7763

HiLo ✓ 1.1014 1.5407 1.3552 1.1633 1.7584 1.5132

Table A. Impact of M3D
v on different methods in terms of Chamfer Distance. We train the models on Thuman2.0 and test them on CAPE.

low-frequency information simultaneously. ECON lacks
this statistic because the authors do not release the train-
ing codes. Comparison of model size. Form Tab. C, with
the exception of ECON, the model sizes of existing meth-
ods are basically the same. Although ECON is lightweight,
it requires time-consuming PSR to complete meshes of hu-
man shape.

F. More visualization Results
F.1. Transfer Sketch to 3D model

Since our HiLo is robust to in-the-wild images [31, 56], we
are able to put it to more applications. We show in Fig. B
that our HiLo is able to transfer a sketch image of a clothed
human into a 3D model with the help of ControlNet [60].
Specifically, we collect sketch images from Pinterest and
use ControlNet to transfer the images to RGB images. The
RGB images are then fed to our HiLo to reconstruct 3D
model of the corresponding human.

F.2. Results on In-the-wild Images

We report more comparisons with state-of-the-art meth-
ods on in-the-wild images in Fig. C, Fig. D, Fig. E,
Fig. F, Fig. G, Fig. H, Fig. I, Fig. J, Fig. K. We ren-
der the reconstructed 3D models from four different views,
i.e., 0◦, 90◦, 180◦, 270◦.



Table C. Comparing training/inference efficiency and model size of existing methods.

Method Inference Time (seconds) Training Time (seconds) Million Parameters (seconds)

PIFu [44] 8.13 1636 28.09
PaMIR [64] 21.97 1298 28.18
ICON [53] 18.63 1697 28.11
D-IF [55] 18.51 2336 28.79

ECON [54] 110.93 - 12.07
HiLo (Ours) 19.17 1918 28.21

3 3D ModelRGB Image2Sketch1

Figure B. More application of our HiLo. We are able to transfer a sketch of a clothed human into a 3D model.
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Figure C. Visualization comparisons of reconstruction for our HiLo vs SOTA.
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Figure D. Visualization comparisons of reconstruction for our HiLo vs SOTA.
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Figure E. Visualization comparisons of reconstruction for our HiLo vs SOTA.



ECON

DIF

ICON

PaMIR

PIFu

Figure F. Visualization comparisons of reconstruction for our HiLo vs SOTA.
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Figure G. Visualization comparisons of reconstruction for our HiLo vs SOTA.



Figure H. Visualization comparisons of reconstruction for our HiLo vs SOTA.



Figure I. Visualization comparisons of reconstruction for our HiLo vs SOTA.



Figure J. Visualization comparisons of reconstruction for our HiLo vs SOTA.



Figure K. Visualization comparisons of reconstruction for our HiLo vs SOTA.


