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1. Implementation Detail
1.1. Model Setting

Monocular Baseline. We use FCOS3D [1] as our monoc-
ular baseline, of which the implementation is almost the
same as the official released one on MMDetection3D [2]
at GitHub:fcos3d. Specifically, we use ResNet101 [3] with
deformable convolutions [4] as the backbone network, and
deploy FPN [5] as the neck to produce multi-scale features.
For head, there are five branches with 256 channels for 3D
object detection. They are responsible for classification,
centerness prediction, 3D box generation, attribute predic-
tion and velocity prediction, respectively. For the KITTI,
Cityscapes3D, Waymo and Argoverse 2 experiments, we re-
move the attribute and velocity branches. For the nuScenes
dataset, we keep the exact structure.

LR3D. To deploy the IP-Head, based on FCOS3D, we re-
place its original depth regression module with three mod-
ules for 2D detection f2d, 2D box positional encoding fPE ,
and weight generation fg .

In our implementation, f2d is composed of two 3x3 con-
volutions with channels of 256 and 4 to predict 2D bound-
ing boxes. fPE , which encodes the predicted 2D box sizes
on images to high-dimensional embeddings, is a fixed posi-
tional encoding [6, 7] with the output channel as 16. fg in-
cludes two 3x3 convolutions with channels of 256 and 272
to extract weights of f (θ) which is a 2-layer perceptron with
channels of 16 and 1 (272 = 16× 16 + 16× 1) to transfer
2D box embeddings to corresponding depth predictions.

Long-range Teacher. For long-range teacher experiments,
we utilize LR3D with distance and score thresholds of 40m
and 0.1, respectively, to generate pseudo distant 3D annota-
tions to train student models. Note that, for all experiments
unless further specifications, we limit the farthest available
3D annotations to 40m.

1.2. Training Schedule

Experiments on the KITTI dataset We train the FCOS3D
baseline and our LR3D model using the same training
schedule. They are trained with SGD optimizer under the
initial learning rate as 1e-3 for total 48 epochs with a batch

size of 24 equally distributed on 8 GPUs. We adopt the step-
wise learning rate decay strategy and decay the learning rate
by 0.1 after 32 epochs and 44 epochs. Random flipping is
adopted during training as augmentation strategy.

Experiments on the nuScenes dataset For nuScenes
experiments, we follow the same training schedule as
GitHub:fcos3d. We train our models with SGD optimizer
with an initial learning rate of 2e-3 for 12 epochs. These
models are trained on 8 GPUs with a total batch size of 16.
We decay the learning rate at 8 and 11 epochs with a rate of
0.1. We adopt random flipping as the data augmentation.

Experiments on the Cityscapes dataset For Cityscapes3D
experiments, we use the same training schedule as KITTI
experiments. Specifically, We train our models with SGD
optimizer with an initial learning rate of 1e-3 for 48 epochs.
The total batch size is 24. We decay the learning rate by 0.1
after training 32 epochs and 44 epochs, respectively.

Experiments on the Waymo dataset For experiments on
Waymo, we base our implementation on the codebase of
GitHub:DFM. We use the same training schedule as the of-
ficially provided FCOS3D on Waymo Open Dataset. We
train our model for 24 epochs, with a total batch size of 24.
The model is optimizer by SGD with an initial learning rate
of 8e-3 which is then decayed by 0.1 after 16 and 22 epochs.

Experiments on the Argoverse 2 For Argoverse 2 experi-
ments, we train the FCOS3D with our IP-Head for total 12
epochs. The initial learning rate is 2e-3, and the optimizer
is SGD. We use random flipping as the data augmentation.

Long-range Teacher. The training schedules and the ar-
chitectures of student models [8–14] are exactly the same
as the official settings without modifications. The only dif-
ference is that, for distant 3D annotations of objects over
a specific range (40m for KITTI, nuScenes, Cityscapes3D
and Argoverse 2; 50m for Waymo Open Dataset), we use
the 3D predictions of LR3D instead of the ground truth.

2. Results on Cityscapes3D

Cityscapes3D [15] provides high-quality 3D labels for ex-
tremely distant objects among which the farthest instance
is more than 250m. It includes 3D box annotations of in-
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Method Distant 3D
Groundtruth?

Overall Close (0m-40m) Distant (40m-80m) Distant (80-Inf)
LDS (%) mAP (%) LDS (%) mAP (%) LDS (%) mAP (%) LDS (%) mAP (%)

FCOS3D [1]
√

54.15 47.13 60.36 53.05 50.40 40.49 38.44 29.91
FCOS3D [1] - 27.85 21.98 59.23 48.99 4.59 2.13 0.0 0.0
LR3D (IP-FCOS3D) 51.85 49.09 62.86 57.35 46.82 36.08 34.54 34.88

Table 1. Comparison on FCOS3D with and without IP-Head supervised by distant 2D ground truth only on the Cityscapes3D validation
dataset. Their fully supervised counterparts (with distant 3D ground truth) are also illustrated.

(a) (b)

Figure 1. The recall rate and the relative distance error breakdowns of target objects with different depth. Models for comparisons are
trained with 3D bounding box annotations within 40m only. (a). For objects beyond the 3D supervision range (40m), FCOS3D can hardly
retrieve their 3D bounding boxes leading to a huge drop on the recall rate; while our LR3D can well detect those remote objects even
much beyond the 3D supervision range. (b). The distance estimation error goes larger for FCOS3D when the target objects are beyond
the 3D supervision range; while LR3D is capable of accurate distance estimation of far away objects, even though they are beyond the 3D
supervision range.

stances in 6 classes, labels 2,975 scenes for training, and
leaves 500 scenes for validation. To further analyze the fea-
sibility of only using 2D annotations for detecting 3D ob-
jects in farther areas, e.g., farther than 80m, we test LR3D
on the Cityscapes3D dataset for quantitative validation.

Similar to the setting of KITTI [16] dataset, we com-
pare the performance of FCOS3D [1] with and without our
IP-Head design on instances labeled as “car”. We manu-
ally mark those objects farther than 40m as distant objects,
remove their 3D annotations, and only use their 2D annota-
tions during training. For objects closer than 40m, we keep
both their 2D and 3D bounding box labels for training.

As shown in Table 1, compared to the original FCOS3D
design, our LR3D outperforms it by a large margin on de-
tecting distant 3D objects beyond the 3D supervision range
(40m), i.e., 42.23% LDS improvements for instances from
40m to 80m, and 34.54% LDS improvements for instances
farther than 80m. Even compared to the model supervised
by human labeled high-quality distant 3D annotations, our
LR3D still yields competitive performance.

In Figure 1, we show the breakdowns of target objects
with different distance. Specifically, we first cluster objects
into 10 groups through their ground truth depth. Objects in

each group are within 20m apart. Then, we utilize FCOS3D
and LR3D, trained with 3D annotations within 40m only, to
obtain 3D detection, and compare the recall rate (Figure 1
(a)) and the relative distance error (Figure 1 (b)) for each
group. As illustrated, when the target objects are beyond the
3D supervision range (40m), the performance of FCOS3D
drops significantly. In contrast, our LR3D is still capable of
accurately detecting those remote objects, with higher recall
rate and smaller relative distance error.

These experimental results show that, by only using 3D
annotations within 40m, LR3D is capable of producing ac-
curate 3D detection for objects further than 80m, even up
to 250m, which demonstrates the feasibility of our pro-
posal for long-range 3D detection. Moreover, for distant
objects with few or no interior points, since drawing their
2D bounding boxes on images is much easier than labeling
their 3D annotations, our proposal benefits the scalibility of
applications related to long-range 3D detection.

3. Results on Waymo Open Dataset
We further conduct experiments on Waymo Open Dataset
[18]. For experiments on the Waymo dataset, in order to
keep consistent with the official Waymo testing distance



Method Distant 3D
Groundtruth?

Vehicle (LDS) Pedestrian (LDS) Cyclist (LDS)
0-30m (%) 30-50m (%) 50-Inf (%) 0-30m (%) 30-50m (%) 50-Inf (%) 0-30m (%) 30-50m (%) 50-Inf (%)

FCOS3D [1]
√

37.64 15.99 12.50 62.00 53.46 46.57 45.20 30.74 20.02
FCOS3D [1] - 37.81 16.06 2.75 62.20 54.34 5.98 45.47 31.64 2.61
LR3D (IP-FCOS3D) 37.56 15.40 11.58 61.71 53.18 38.52 45.24 30.53 18.51

Long-range Teacher

MV-FCOS3D++ [14]
√

44.43 19.44 11.55 71.24 63.85 55.61 54.19 39.04 26.40
MV-FCOS3D++ [14] - 44.92 19.29 2.19 71.26 63.94 3.94 54.59 39.97 1.25
+LR3D teacher 43.76 18.45 9.28 70.41 62.29 47.22 53.85 38.77 23.51

Table 2. Comparisons of Long-range Detection Score (LDS) on state-of-the-art methods with and without IP-Head or LR3D teacher
supervised by distant 2D ground truth only on the Waymo Open Dataset. Their fully supervised counterparts (with distant 3D ground truth)
are also illustrated.

Method Distant 3D
Groundtruth?

Vehicle (LET-3D-AP) Pedestrian (LET-3D-AP) Cyclist (LET-3D-AP)
0-30m (%) 30-50m (%) 50-Inf (%) 0-30m (%) 30-50m (%) 50-Inf (%) 0-30m (%) 30-50m (%) 50-Inf (%)

FCOS3D [1]
√

75.50 60.51 43.14 60.79 40.45 20.60 45.02 14.67 8.95
FCOS3D [1] - 75.43 61.24 5.71 60.20 41.45 3.14 44.77 14.33 2.60
LR3D (IP-FCOS3D) 75.53 60.79 33.19 60.88 40.32 15.90 45.32 14.11 5.91

Long-range Teacher

MV-FCOS3D++ [14]
√

86.66 69.34 48.75 66.24 35.56 14.34 53.63 14.64 6.93
MV-FCOS3D++ [14] - 86.73 69.61 5.34 66.37 36.91 2.92 53.92 14.07 3.66
+LR3D teacher 86.50 68.99 37.19 66.17 34.95 11.92 53.60 13.26 6.77

Table 3. Comparisons of LET-3D-AP [17], the official Waymo Open Dataset 3D camera-only detection metric, on state-of-the-art methods
with and without IP-Head or LR3D teacher supervised by distant 2D ground truth only on the Waymo Open Dataset. Their fully supervised
counterparts (with distant 3D ground truth) are also illustrated.

split (0-30m; 30-50m; over 50m), we label objects further
than 50m away as distant objects. During training, we dis-
card the 3D box annotations for distant objects and only
use their 2D bounding box annotations as supervision. For
objects closer than 50m, we use both their 2D and 3D anno-
tations for training.

We base our implementation on the codebase of
GitHub:DFM, utilize FCOS3D as our monocular baseline,
and enhance it with IP-Head (IP-FCOS3D) for detecting
distant 3D objects using their 2D supervisions only. To fur-
ther demonstrate the effectiveness of our long-range teacher
design, we choose MV-FCOS3D++ [14] as the student
model and test its performance training without distant 3D
supervision. We evaluate different models among all 3
classes on waymo dataset.

As shown in Table 2, compared to the original FCOS3D
which heavily relies on abundant 3D annotations, if dis-
tant 3D annotations is missing, our proposed LR3D (IP-
FCOS3D) achieves 8.83%, 32.54% and 15.90% LDS im-
provements on distant “Vehicle”, “Pedestrian” and “Cy-
clist” instances farther than 50m, respectively. Furthermore,
when using 3D predictions from LR3D (IP-FCOS3D) as
pseudo distant 3D annotations, MV-FCOS3D++ [14] out-
performs itself, which is trained with only distant 2D anno-
tations, by 7.09% LDS on vehicle instances beyond 50 me-

ters. These experiments further demonstrate the effective-
ness of our proposed LR3D in detecting distant 3D objects
using 2D box supervision.

We also tabulate the quantitative comparisons of dif-
ferent methods under LET-3D-AP [17] metric, the official
Waymo Open Dataset 3D camera-only detection evaluation
metric, in Table 3. We have to mention that, the official
LET-3D-AP only counts objects within the range of 75 me-
ters. Any ground-truth object farther than this range is ig-
nored during the evaluation. Therefore, LET-3D-AP evalu-
ation only considers partial distant 3D objects, while results
in Table 2 are calculated by taking all distant 3D annotations
into count. As shown, under the LET-3D-AP, our LR3D
still shows superior performance compared to the baseline
models on detecting distant 3D objects without using their
corresponding 3D box annotations.

4. Results on Argoverse 2 Dataset
Finally, we report our experimental results on Argoverse 2
dataset [19]. Given the absence of a publicly available code-
base for camera-based 3D object detection on the Argoverse
2 dataset, we re-implement FCOS3D [1] on this dataset. We
then conduct comparisons between FCOS3D with and with-
out the IP-Head, using our own baseline as a reference.

We mark objects farther than 40m as distant objects, re-

https://github.com/Tai-Wang/Depth-from-Motion


Method Distant 3D
Groundtruth?

Overall Close (0m-40m) Distant (40m-80m) Distant (80-Inf)
LDS (%) mAP (%) LDS (%) mAP (%) LDS (%) mAP (%) LDS (%) mAP (%)

FCOS3D [1]
√

16.30 10.91 12.77 5.69 19.64 13.83 20.29 16.55
FCOS3D [1] - 5.81 3.08 12.60 5.38 4.43 2.90 0.00 0.00
LR3D (IP-FCOS3D) 15.17 9.59 12.31 5.95 18.95 12.18 14.17 11.63

Table 4. Comparison on FCOS3D with and without IP-Head supervised by distant 2D ground truth only on the Argoverse 2 validation
dataset. Their fully supervised counterparts (with distant 3D ground truth) are also illustrated.

Score
Threshold

Overall (0m-51.2m) Close (0m-40m) Distant (40m-51.2m)
LDS (%) LDS (%) LDS (%)

0.05 27.8 29.4 13.7
0.1 29.9 31.5 13.5
0.2 29.3 31.5 10.5
0.3 28.8 31.7 7.3

Table 5. Effect of the score threshold in LR3D teacher to remove
redundant 3D pseudo labels.

Depth
Selection
Strategy

No. of
Augmented

Depth

Overall
(0m-Inf)

Close
(0m-40m)

Distant
(40m-Inf)

LDS (%) LDS (%) LDS (%)

linspace
10 49.6 51.9 35.4
20 49.9 52.1 36.1
40 49.5 51.8 35.0

random 3 50.0 52.1 36.2
10 49.9 51.9 36.2

Table 6. Effect of depth selection strategies and numbers of aug-
mented depth in the projection augmentation.

move their 3D annotations, and only use their 2D annota-
tions for training. For other objects within the 40m range,
we utilize their complete annotations, including both 2D
and 3D box annotations, for training purposes.

To facilitate the training on the extensive Argoverse 2
dataset, we opt to train our model on a reduced training
set comprising only 1/6 of the original Argoverse 2 sensor
dataset. We focus specifically on instances labeled as “Reg-
ular vehicle”. The experimental results are listed in Table 4,
which demonstrates a consistent improvement of our LR3D
on boosting existing camera-based 3D detectors to detect
distant 3D objects using 2D annotations only.

5. Additional Ablation Studies

Analysis on the Long-range Teacher. In this paragraph,
we analyze the impact of score thresholds on removing re-
dundant pseudo distant 3D labels generated by long-range
teachers. These experiments are conducted on nuScenes
dataset with a quarter of training data. The teacher and the
student models are LR3D (IP-FCOS3D) and BEVFormer-S
[13], respectively. As illustrated in Table 5, with the score
threshold as 0.1, the student model achieves the best balance
of 3D detection on close areas and distant areas.

Hyper-Parameters on Projection Augmentation. Pro-
jection augmentation generates extra b2d-d training pairs

minimum
augmented

depth (meters)

maximum
augmented

depth (meters)

Overall
(0m-Inf)

Close
(0m-40m)

Distant
(40m-Inf)

LDS (%) LDS (%) LDS (%)
40 60 49.4 51.6 35.1
40 80 50.0 52.1 36.2
40 120 49.9 52.0 36.2

Table 7. Effect of different minimum and maximum augmented
depth thresholds in the projection augmentation.

to ensure the network fg to generate correct implicit in-
verse function f (θ). In our implementation, for each
close object, we randomly choose 3 depth values from
the minimum augmented depth threshold (40m for exper-
iments on all datasets) to the maximum threshold (80m for
KITTI, nuScenes, and Waymo; 200m for Argoverse 2 and
Cityscapes3D) as augmented depth, calculate the associated
projected 2D boxes on image, and utilize those augmented
pairs together with ground truth pairs for training.

In this paragraph, we evaluate two different strategies
for obtaining augmented depth. One is “random” selection,
our default implementation. Another one is “linspace” se-
lection, which returns evenly spaced depth values from the
minimum augmented depth threshold to the maximum aug-
mented depth. We conduct this ablation study on KITTI
dataset, where the farthest 3D object is typically within 80
meters. According to Table 6, the “random” strategy with
3 randomly augmented depth values performs the best. In
Table 7, we further test the impact of different minimum
and maximum thresholds for generating augmented depth
values on the projection augmentation. As illustrated, the
larger the range of randomly augmented depth is, the more
precise the implicit inverse function estimates. Therefore,
we finally choose the typical distance of the farthest anno-
tated 3D objects as the maximum augmented depth thresh-
olds for each dataset specifically (80m for KITTI, nuScenes,
and Waymo; 200m for Argoverse 2 and Cityscapes3D), and
set 40m as the minimum depth thresholds for all.

Compared with Object Distance Estimation Methods.
In this paper, we propose IP-Head for depth estimation of
distant objects without 3D supervision. As a related task,
long-range object distance estimation estimates the distance
of far away objects, of which IP-Head can serve as the so-
lution, yet without the need of annotations. We conduct
experiments to evaluate its effectiveness, and compare it
with existing methods on KITTI dataset. We mark objects



Method LiDAR Long-range Distance
Ground truth? <5%↑ <10%↑ <15%↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓

Zhu & Fang [20] √ √ 41.1 66.5 78.0 8.9 0.97 8.1 0.136
R4D [21] 46.3 72.5 83.9 7.5 0.68 6.8 0.112
LR3D (IP-FastRCNN3D) - - 47.2 77.9 92.5 6.3 0.33 4.3 0.080

Table 8. Comparisons with state-of-the-art object distance estimation methods of distant objects on KITTI Dataset.

over 40m as distant objects, and compare the performance
of different methods for distant objects following [21]. To
align the settings of state-of-the-art methods [20, 21], we
adopt IP-FastRCNN3D as the detector of LR3D, in which
2D ground truth boxes are used as proposals for distance
estimation. As illustrated in Table 8, even without distance
annotations for long-range objects and LiDAR hints, LR3D
still outperforms existing fully supervised methods.

6. Additional Qualitative Results
In Figure 2, we provide more qualitative results on detect-
ing extremely distant 3D objects. As illustrated, LR3D is
capable of accurately detecting 3D bounding boxes of ob-
jects over 200m with only 3D supervision within 40m. In
Figure 3, we show qualitative comparisons of DID-M3D
[12] with and without LR3D long-range teacher on KITTI
Dataset [16]. In Figure 4 and Figure 5, we compare the
performance of BEVFormer [13] with and without LR3D
long-range teacher on nuScenes Dataset [22]. All experi-
ments are conducted under a limited range of available 3D
bounding box annotations (40 meters). As shown, LR3D
boosts the performance of state-of-the-art 3D detectors on
long-range 3D detection and enables them to accurately de-
tect distant objects without corresponding 3D supervision.



Out-of-LiDAR-Range 3D Object Detection:
Single-view Image + 2D Box Guidance → 3D Box Predictions

2D Box Guidance
2D Box Guidance (Zoomed)

3D Box Predictions
3D Box Predictions (Zoomed)

2D Box Guidance
2D Box Guidance (Zoomed)
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Example 1:

Example 2:
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Figure 2. More qualitative results on detecting extremely distant 3D objects. As shown, taking as inputs of 2D bounding box conditions
(left), LR3D is capable of predicting associated 3D boxes (right), including locations, sizes and orientations, for distant objects (marked
in green) much farther than the range of available 3D annotations (40m in our case). LiDAR points are projected on input images with
different colors corresponding to different depths.



DID-M3D LR3D Zoomed (LR3D)
Figure 3. Qualitative comparison results between DID-M3D [12] with (middle, LR3D) and without (left, DID-M3D) LR3D long-range
teacher on detecting distant objects beyond 3D bounding box label range. The newly detected distant objects with their predicted 3D
bounding boxes are marked in green. As illustrated, though only trained with limited range of available 3D annotations within 40m, LR3D
enables DID-M3D to accurately detect distant objects beyond this range.
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Figure 4. Qualitative comparison results between BEVFormer [13] with (lower, LR3D) and without (upper, BEVFormer-S) LR3D long-
range teacher on detecting distant objects beyond 3D bounding box label range. The newly detected distant objects with their predicted
3D bounding boxes are surrounded in red circle. As illustrated, though only trained with limited range of available 3D annotations within
40m, LR3D enables BEVFormer to accurately detect distant objects beyond this range on nuScenes Dataset.
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Figure 5. More qualitative comparison results between BEVFormer [13] with (lower, LR3D) and without (upper, BEVFormer-S) LR3D
long-range teacher on detecting distant objects beyond 3D bounding box label range (40 meters).
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