
KITRO: Refining Human Mesh by 2D Clues and Kinematic-tree Rotation

Supplementary Material

A. Details on Swing-Twist Decomposition
Swing-twist decomposition for a rotation is a fundamental
technique in computer graphics [1, 5, 6] and was first intro-
duced to the human mesh recovery field by HybrIK [9]. As
shown in Fig. 1, for any given joint, its rotation θR ∈ SO(3)
can be decomposed into a 2 degree-of-freedom (DoF) swing
rotation Rsw and a 1 DoF twist rotation Rtw, such that
θR = RswRtw.
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Figure 1. Illustration of the swing-twist decomposition [5].

Swing Rotation. Rsw is to rotate the bone from the tem-
plate relative pose t⃗r to the target relative orientation p⃗r.
This rotation occurs around axis n⃗, defined as:

n⃗ =
t⃗r × p⃗r

∥t⃗r × p⃗r∥
, (1)

which is orthogonal to both t⃗r and p⃗r. The rotation magni-
tude, denoted as γ, is the angle subtended between t⃗r and
p⃗r:

cos γ =
t⃗r · p⃗r

∥t⃗r∥∥p⃗r∥
, sin γ =

∥t⃗r × p⃗r∥
∥t⃗r∥∥p⃗r∥

(2)

Employing Rodrigues’ rotation formula, the swing rotation
Rsw is expressed in closed form as:

Rsw = I + sin γ[n⃗]× + (1− cos γ)[n⃗]2×, (3)

where I represents the 3 × 3 identity matrix and [n⃗]× de-
notes the skew-symmetric matrix of n⃗.

Twist Rotation. Then Rtw is to rotate the bone around
bone axis t⃗r itself. Let φ represent the rotation angle. Ac-
cording to Rodrigues’ formula, the twist rotation is given
by:

Rtw = I + sinφ
[t⃗r]×

||t⃗r||
+ (1− cosφ)

[t⃗r]
2
×

||t⃗r||2
, (4)

where [t⃗r]× is the skew-symmetric matrix of t⃗r.
In our work, we focus on refining the swing rotation Rsw

while preserving the initial twist rotation Rtw estimates.
This is motivated by the limited variability in twist angles

φ due to human physiological constraints, as evidenced by
HybrIK’s empirical studies [9]. In contrast, the swing ro-
tation Rsw exhibits a more significant range of motion, ne-
cessitating a more detailed and accurate refinement. Thus,
in our approach, we explicitly formulate the bone directions
in closed form in order to refine the swing rotation Rsw.

B. Proof-of-concept for Solution Selection
In this section, we conduct empirical studies to validate the
assumptions discussed in Sec. 4.3 of the main paper. As
shown by the red bars in Fig. 2, 87% of bones in the initial
HMR estimates are correctly identified as pointing towards
or away from the camera. When a 10◦ margin of error is tol-
erated in ambiguous cases where only 10 degrees separate
two solutions, the accuracy increases to 93% as illustrated
by the green bars in Fig. 2. These results affirm the effec-
tiveness of the original HMR model in determining bone
direction towards or away from the camera, providing a re-
liable prior for the decision tree formulation of our method.
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Figure 2. Classification accuracy of bone pointing towards or away
from the camera using the HMR model. Red bars indicate 87% ac-
curacy without tolerance, while green bars show improved accu-
racy up to 93% when a 10◦ error margin is allowed. These results
highlight the HMR model’s effectiveness in coarse-grained direc-
tionality estimation of bones.

C. Correctness Proof for θ update
In this section, we validate the correctness of the pose up-
date equation (i.e., Eq. 19 in Sec. 4.3 of the main paper).

Proof. Assuming the refinement from the root joint up to
the parent joint p̃ of joint p is already done, the current fo-
cus is updating rotation θp

R for joint p. The objective is to
verify that updating the joint rotation from θp

R to θp
R
′ cor-

rectly rotate the bone direction of bone (p, c) from b⃗(p,c) to
b⃗
(p,c)
new . Considering the joint rotations in θ are all relative to



each parent joint’s coordinate system, the bone direction in
the absolute coordinate system is derived as the product of
relative rotations from the root joint to the parent joint along
the kinematic chain. Hence, the global rotation for joint p
in the absolute coordinate system before refinement is:

Rp
abs =

∏
i∈KC(p)

θi
R, (5)

where
∏

i∈KC(p) denotes the matrix product of rotation ma-
trices from the root joint to joint p, with KC(p) represent-
ing the kinematic chain. Considering the template relative
pose (T pose) for bone (p, c) denoted as t⃗pr , when applied
with absolute rotation from Eq. 5, yields the absolute bone
direction:

b⃗(p,c) = Rp
abs · t⃗

p
r =

∏
i∈KC(p)

θi
R · t⃗pr , (6)

As mentioned in the main paper, R(p,c)
sw , computed via Ro-

drigues’ formula, is the rotation matrix that rotates b⃗(p,c) to
b⃗
(p,c)
new in the absolute coordinate system:

b⃗(p,c)
new = R(p,c)

sw · b⃗(p,c). (7)

Now we verify the updated absolute rotation for joint p after
the refinement of Eq. 19:

Rp
abs

′
=

∏
i∈KC(p̃)

θi
R · θp

R
′
, (8)

applying this new rotation to the T pose for bone (p, c) re-
sults in:

Rp
abs

′ · t⃗pr =
∏

i∈KC(p̃)

θi
R · θp

R
′ · t⃗pr (from Eq. 8)

=
∏

i∈KC(p̃)

θi
R · (

∏
i∈KC(p̃)

θi
R)

T

·R(p,c)
sw ·

∏
i∈KC(p)

θi
R · t⃗pr (Main’s Eq. 19)

=R(p,c)
sw ·

∏
i∈KC(p)

θi
R · t⃗pr (SymMat property)

=R(p,c)
sw · b⃗(p,c) (from Eq. 6)

=b⃗(p,c)
new (from Eq. 7)

(9)
The ‘SymMat property’ corresponds to the property of sym-
metry rotation matrices, where the transpose of a rotation
matrix equals its inverse. Eq. 9 demonstrates that the up-
dated joint rotation θp

R
′ correctly modifies b⃗(p,c) to the de-

sired absolute rotation b⃗
(p,c)
new .

D. More Ablation Studies
In this section, we present extended ablation studies for our
framework design.

Tab. 1 details the results of eight different configurations
of camera, shape, and pose refinement. The study reveals
that when refining only one of these three factors fails to
achieve effective results. This ineffectiveness can be at-
tributed to the importance of 2D keypoints and 3D human
mesh alignment in our approach. Without the proposed
alignment mechanisms in camera and shape refinements,
pose refinements alone are also insufficient.
Table 1. Detailed ablation study for three factors on 3DPW
dataset. The first row represents the baseline HMR model, and
the last row depicts our full model. The identical results in the first
two rows are because updating only the camera does not change
SMPL parameters, leading to unchanged outcomes.

Camera Shape Pose PA-MPJPE ↓ MPJPE ↓ PVE ↓
✗ ✗ ✗ 43.76 73.67 91.58
✓ ✗ ✗ 43.76 73.67 91.58
✗ ✓ ✗ 44.31 69.92 83.26
✗ ✗ ✓ 45.92 87.33 100.73
✓ ✓ ✗ 44.57 80.03 95.71
✓ ✗ ✓ 35.00 69.02 84.25
✗ ✓ ✓ 28.53 46.68 57.76
✓ ✓ ✓ 27.67 43.53 53.44

In addition, we explored varying learning rates (Fig. 3)
and refinement iteration numbers (Fig. 4) for the shape re-
finement model as discussed in Sec 5.2 of the main paper.
The results depicted in these figures demonstrate that both
the learning rate and iteration number do not significantly
impact the performance of our method. This indicates a ro-
bustness in our approach to variations in these parameters.
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Figure 3. Error with different learning rates for shape refinement.
These three line plots (PA-MPJPE, MPJPE, and PVE) illustrate
our model’s performance stability across a range of learning rates.

E. Improvement Distribution over Samples
In this section, we illustrate the extent of improvement in
individual samples following our refinement process. Fig. 5
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Figure 4. Error with the number of fine-tuning iterations. The
results indicate consistent model performance over varying itera-
tions for shape refinement.

and Fig. 6 displays the distribution of performance improve-
ments on the 3DPW and Human3.6M dataset respectively.
These visualizations demonstrate that a majority of the sam-
ples exhibit significant improvement, again demonstrating
the comprehensive efficacy of our method.
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Figure 5. Distribution of performance improvement on 3DPW.
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Figure 6. Distribution of performance improvement on the Hu-
man3.6M.
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(a) Our robustness to high-errors.

0 1 10
2D keypoint Noise std (pixel)

0

20

40

60

80

100

M
PJ

PE
 E

rro
r (

m
m

)

SMPLify
Ours w/o GMM prior
Ours w/ GMM prior

(b) Impact of 2D keypoint quality.

F. Impact of Initial Predicted Mesh Quality
As mentioned in the limitation section, our method relies
on the initial predicted mesh as a reference for hypothesis
selection. Here we investigate how poor initial mesh predic-
tions could impact the improvement. As shown in Fig. 7a,
where we plot the MPJPE improvement w.r.t. the original
MPJPE error, KITRO withstands high errors with consis-
tently larger improvements. The reason is our global path
selection with the decision tree tolerates a few initial bone-
facing errors. Additionally, about half of the 13% bone-
facing errors are from similar-valued solutions which are
not serious mistakes. However, when the initial prediction
is too wrong, e.g. 300mm MPJPE or too many bone-facing
errors (see Tab. 2), then our improvements decrease.
Table 2. Impact of base models on bone-facing and PA-MPJPE.

Base Model # of Correct Bone-facing PA-MPJPE
(out of 23 bones) Ours SMPLify

CLIFFb 20.1 ± 1.8 27.67 36.11
EFT 19.5 ± 2.1 32.34 44.69
SPIN 18.8 ± 2.4 42.46 47.99

Current projected joint

Given 2D keypoints

Conflicting gradient 
backward to ‘Shoulder’

Ideal update direction 
for ‘Elbow’ and ‘Wrist’

Figure 8. Illustration of gradient conflict: conflicting gradients
at the Elbow and Wrist can complicate and negatively impact the
optimization of the Shoulder joint, demonstrating a key limitation
in previous gradient-based human mesh refinement methods.



Table 3. Refinement results using 2D keypoints mapping from
Openpose detection result. ‘2DKP’ denotes ’2D Keypoints’; ‘GT’
denotes ’Ground Truth’.

Method 2DKP PA-MPJPE ↓ MPJPE ↓ PVE ↓
SMPLify GT 39.99 71.11 84.28
Ours GT 27.45 48.42 59.65
SMPLify Detected 51.35 90.68 107.41
Ours Detected 45.88 79.80 96.60

G. Impact of Input 2D Keypoint Quality
We follow the protocol of previous human mesh refinement
works [2, 4, 7, 8, 10], we and all these works refine 3D
pose and shape estimates with ground truth 2D keypoints.
Given the different conventions between 2D detectors and
SMPL regarding the definition of joints [11], it’s non-trivial
to directly use detected 2D keypoints. For example, SMPL
puts the hip joint where the bone rotation happens while
Openpose [3] locates it at the surface landmark where the
thigh begins, so one needs to define or learn a mapping
from Openpose to SMPL format, or directly train a detec-
tor upon SMPL format. Here we performed a rudimentary
experiment to train a basic neural network architecture—
a simple 3-layer MLP—on 3DPW training data to get the
mapping from Openpose to SMPL format. As shown in
Tab. 3, the performance of both our method and SMPLify
diminishes when subjected to noisy 2D keypoints detection
and mapping. This degradation is expected as human mesh
refinement inherently relies on the precision of 2D key-
points. Nevertheless, our method is still more robust than
SMPLify under the detected keypoints scenario. It is impor-
tant to note that the current approach, utilizing only an MLP
for keypoint format mapping, leaves room for enhancement
through more advanced mapping strategies and more train-
ing data. However, those explorations extend beyond the
scope of this paper and are left for future investigation.

Furthermore, we add Gaussian noise under different
standard deviations to simulate the poor 2D keypoint qual-
ity as shown in Fig. 7b. Our raw method inherently assumes
that the 2D pose is correct and as such, can only withstand
small errors (see Fig. 7b, 1-2 px std). This assumption does
not hold for larger errors and some intervention is required.
A simple strategy is to add a GMM prior, similar to SM-
PLify. SMPLify uses the GMM as a loss; we use it as a
likelihood to reject super unnaturally refined outputs based
on erroneous 2D poses (see Fig. 7b, 10 px std). More ef-
fective filtering strategies to improve overall robustness to
2D pose error are outside our current scope and are left for
future work.

H. Joints and Bones Names on Kinematic-tree
According to SMPL [11], there are 24 joints and 23 bones
defined in the human kinematic-tree. We list all joint names
and bones in Fig. 9

I. More Visualization Results
In this section, we present additional visualization results.
Fig. 10 illustrates the refinement process over iterations on
more examples, and Fig. 11 provides further comparisons
with SMPLify [2] and CLIFFr [10].

J. Extra Discussion
In this section, we provide more discussion about our
method as follows

1) Why previous methods are suboptimal in proximal
joints?
As discussed in the main paper, prior human refinement
methods typically utilize parametric optimization to opti-
mize all body joints collectively through gradient descent.
However, this scheme has limitations with gradient descent:
the gradient updates at different joints can be inconsistent
or even conflicting. For instance, the optimal update di-
rections for the Elbow and Wrist might significantly differ,
as demonstrated in Fig. 8. Such conflicts in gradient di-
rections, when backpropagated to proximal joints like the
Shoulder, can lead to complications in their updates, ulti-
mately resulting in suboptimal outcomes in proximal joints
refinement (as illustrated in Fig. 1b of the main paper).

2) What is the computation complexity of KITRO?
As discussed in Sec. 4.3 of the main paper, the computa-
tion is efficient due to the decision tree’s design, where the
calculation depends solely on the depth, allowing nodes at
each depth level to be processed in parallel. The most time-
consuming part of our method is the Adam-based shape op-
timization and the total iteration number. However, Fig. 4
and Fig. 5 (in the main paper) show that these numbers are
both relatively low for decent results. In practice, KITRO
completes testing on all 35,515 samples in 3DPW test set
in 15 minutes on a single NVIDIA GeForce RTX 2080 Ti
GPU. For comparison, under identical conditions, SMPLify
requires 20 minutes, and CLIFFr requires extra fine-tuning
on the whole model taking more than 10 hours.
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