Supplementary Material for
“LDP: Language-driven Dual-Pixel Image Defocus Deblurring Network”

In this supplementary material, we provide additional
LDP implementation details (Sec. 1) and more ablation
studies (Sec. 2), and additional results (Sec. 3).

1. Implementation Details

We build our network structure, Ours (Small) and Ours
(Large), by adopting the backbone network structure from
[2] with small and large configurations, respectively, and
insert one BPA block at the 1** layer of the network back-
bone. The initial channel width for the small and large
of our LDP is 32, and is doubled/halved after downsam-
pling/upsampling. There are 4 layers for the encoder and
decoder, each encoder/decoder layer is followed by a down-
sampling/upsampling operation, and the depth of each layer
is presented below,

e Ours (Small): encoder depth=[2, 2, 2, 2], decoder

depth=[2, 2 ,2, 2].
e Ours (Large): encoder depth=[4, 4, 8, 8], decoder
depth=[8, 8, 4, 4].

The BPA and model block architecture are visualized
in Fig. 1 and Fig. 2. Ours (Small)/Ours (Large) has
7.6M/19.6M parameters and 270G/686G flops, where flops
are measured based on the DPD-blur dataset DP pair res-
olution, i.e., 1120 x 1680. The above measurement does
not take into account CLIP for blur map estimation, which
consumes 88M parameters and 220G flops.

2. Ablation Study

CLIP Design Choices. Our blur map estimation strategy
uses CLIP. We study the impact of CLIP variants on blur
map estimation. We compare three versions of CLIP which
adopt ViT-B/16, ViT-B/32, and ResNet50 as encoder, re-
spectively, and report the results in Tab. 2. We obtain the
best results with ViT-B/32 as the backbone, and also have
the following observations: i) ResNet50 leads to the worst
performance because of the absence of long-range interac-
tion that is required to model the symmetry between the left
and right view. ii) ViT-B/16 achieves the second-best per-
formance. Compared with the ViT-B/32, the patch size is
reduced from 32 x 32 to 16 x 16, and the number of patches
is increased quadratically. The ViT-B/16 thus has a high
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Figure 1. Our BPA block architecture.

complexity when modeling pair-wise patch symmetry, de-
creasing the blur map estimation performance.

DP-aware Format. We experimentally verify the effec-
tiveness of our designed DP-aware format that is used for
blur map estimation. To further demonstrate its advan-
tages, we additionally study three baseline prompts by di-
rectly concatenating the left and right views in Tab. 1. Our
method (prompting the horizontal symmetry between the
left and flipped right views) achieves 0.15/0.03 higher in
PSNR(dB)/SSIM compared to the second-best additional
baseline setting. Moreover, we show the blur maps gen-
erated from different baseline settings in Fig. 3.

Loss Generalization Ability. We train state-of-the-art de-
focus deblurring methods, Restormer and DeepRFT, by ad-
ditionally using our Ly and Ly, in Tab. 3. We denote
the variations as Restormer™ and DeepRFT+. Compared
to the original Restormer and DeepRFT, Restormer™ and
DeepRFT achieve 0.25 dB and 0.41 dB improvements in
PSNR, respectively. The improvements show the effective-
ness of the loss functions.

Analysis of Attention map Our BPA block assumes that
the attention map is an adaptive deblurring kernel. Here
we provide analyses of the attention map in this section.
For simplicity, we assume a single attention block-based de-
blurring network. We then solve the following optimization
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Figure 2. Our LDP architecture. We use the deblurring backbone from [2] composed of NAFBlock, convolution layers, and pixel shuffle
layers. For NAFBlock, we attach the output channel after it. We use ‘Conv’ as a convolution layer followed by kernel size, output channel,
and stride. In the encoder branch (top row), each NAFBlock layer is followed by a convolution layer with stride 2 for downsampling. In
the decoder branch (bottom row), a pixel shuffle layer with a factor of 2 (i.e., ‘PS2’) and a convolution layer is used before each NAFBlock
layer for upsampling. For Ours (Small) and Ours (Large), we have depth=2 and depth=4/8, respectively.
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Figure 3. Blur maps generated from different baseline settings. (a) is the blurred image. From (b) to (e), we present the estimated blur map
by using prompts in Tab. 1.

Table 1. Comparison of using different DP-aware formats.

Prompt PNSR¢ SSIM MAE, MSE_rel
[The left and right of the image are different.] 26.61 0.825 0.036 0.047
[The image is inconsistent from left to right.] 26.69 0.827 0.033 0.046
[The left half and the right half are different.] 26.76 0.828 0.034 0.046
Ours 26.91 0.831 0.032 0.045

problem, where Q, K, and V are projected from the DP pair (B, Br)
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Table 2. Comparison of using different CLIP versions.

Setting PNSR;  SSIM; MAE;  MSE_rel,
ResNet50  26.81 0.828 0.032 0.046
ViT-B/16 26.88 0.830 0.032 0.045
ViT-B/32 26.91 0.831 0.032 0.045

Table 3. Generalization ability of our proposed loss terms Ly
and Lpa. We use t to denote the model trained with additionally
using our Ly and L.

Setting PSNR¢ SSIM MAE, MSE_rel
Restormer 26.66 0.833 0.035 0.046
Restormer™ 26.91 0.834 0.033 0.045
25.71 0.801 0.037 0.051
26.12 0.806 0.036 0.049
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Figure 4. Visualization of feature maps w/o our BPA Block. (a) is
the blur image, and (b) is the feature map from self-attention (Eq.
(8) in main paper). (c) is blur map generated by our method. (d)
is the feature map from Our BPA block (Eq. (9) in main paper).

assume that the attention map is an exponential kernel normalized
for performing deblurring (see Fig. 4).

3. Additional Results

We show restorations of our method and state-of-the-art method
on DPD-blur dataset [1], DPD-disp dataset [4], and our collected
LDP-real data in Fig. 5, Fig. 6, and Fig. 7. The collected LDP-real
data is captured by us using a Canon EOS 5D Mark IV under low
lighting conditions, without ground truth sharp images.
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Figure 5. Qualitative comparison on the DPD-blur dataset [1]. We present the ground truth large sharp image in the first column, and
the regions residing in the red bounding box are cropped into a small ground truth sharp image in the second column. The corresponding
regions of the blurred image (B1,) are in the third column.
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Figure 6. Qualitative comparison on the collected DPD-disp dataset [4]. We present the left DP image (B1,) in the first column, and the
regions residing in the red bounding box and its sharp image are cropped into small images in the third and second columns.
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Figure 7. Qualitative comparison on the collected LDP-real data. We present the left DP image (B1,) in the first column, and the regions
residing in the red bounding box and its sharp image are cropped into small images in the third and second columns.
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