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A. Implementation Details
In this section, we clarify details about the methods, ex-

periments, and training settings.

A.1. Method Details

We provide a table to display dimensions and meanings
of tensors in the LEMON pipeline, shown in Tab. 1. The in-
put images are resized to 224×224 and a pre-trained HRNet
is taken as the extractor. We add human and object masks in
the training to enable the model to focus efficiently on the
interaction between the human and object. The image ex-
tractor outputs the image feature with the shape R2048×7×7.
A 1× 1 convolutional layer is used to reduce the feature di-
mension and the feature is flattened to Fi ∈ R768×49. The
number of object point clouds is 2048, the same setting as
3D-AffordanceNet [11] and IAG-Net [51]. For humans, the
vertices of SMPL-H [42] are regarded as the input, raw ver-
tices possess the shape R6890×3. We sample it to R1723×3

through the script in COMA [41], which is also utilized in
BSTRO [19]. Note that we uniformly use Nh to represent
the number of vertices in the main paper for simplification.
Actually, Nh in H and ϕ̄c are 6890, while in other features
are 1723. DGCNN is taken as the backbone network for
extracting point-wise features of the human and object and
output the Fo ∈ R768×2048,Fh ∈ R768×1723.

The tokens To,Th ∈ R768×1 are utilized to represent
interaction intentions of geometries. They are concate-
nated with Fo,Fh, and get the feature sequence Fto ∈
R768×2049,Fth ∈ R768×1724. Then, the multi-branch at-
tention fδ is performed on Fi and Fto,Fth. Fi serves as
the shared key and value, Fto,Fth serve as queries in two
branches. fδ has 12 heads and each head with the dimension
of 64. After fδ , Fto,Fth are updated to F̄to, F̄th with the

Table 1. Tensors. The dimension and meaning of the tensors in
the LEMON pipeline.

Tensor Dimension Meaning

Fi 768× 49 image feature
Fo, F̄o 768× 2048 geometric feature of the object
Fh, F̄h 768× 1723 geometric feature of the human
To, T̄o 768× 1 intention tokens of object geometry
Th, T̄h 768× 1 intention tokens of human geometry
Fto 768× 2049 concatenation of Fo,To

F̄to 768× 2049 concatenation of F̄o, T̄o

Fth 768× 1724 concatenation of Fh,Th

F̄th 768× 1724 concatenation of F̄h, T̄h

Co 1× 2048 curvature of the object geometry
Ch 1× 1723 curvature of the human geometry
C̄o 768× 2048 curvature feature of the object
C̄h 768× 1723 curvature feature of the human
F̄co 768× 2048 geometric feature with curvature
F̄ch 768× 1723 geometric feature with curvature
Tsp 768× 3 spatial token sequence
ϕa 768× 2048 object affordance representation
ϕc 768× 1723 human contact representation
ϕp 768× 3 object spatial representation

same shape, which are then split to F̄o ∈ R768×2048, T̄o ∈
R768×1 and F̄h ∈ R768×1723, T̄h ∈ R768×1.

F̄o, F̄h and T̄o, T̄h are utilized to model the geometric
correlation. Firstly, we introduce the method to calculate
the geometric curvature. Shown in Fig. 1, for each point p
in the point cloud, the neighbor points are utilized to esti-
mate its normal curvature. Assume p has n neighbor points,
and let mi be the i-th neighbor point. The normal vector
corresponding to mi is M⃗i. Define p, X⃗i, Y⃗i, N⃗i be an or-
thogonal coordinates system, which is the local coordinates
L at point p. N⃗i is the normal vector of p, X⃗i, Y⃗i are orthog-
onal unit vectors. In L, coordinates could be formulated
as: p(0, 0, 0),mi(xi, yi, zi), M⃗i(nx,i, ny,i, nz,i). Then, the
normal curvature Ci

n of p could be calculated with an oscu-
lating circle passing through point p and mi, which could
be expressed as:

Ci
n =− sinβ

|pmi| sin θ
≈ − nxy√

n2
xy + n2

z

√
x2
i + y2

i

,

where nxy =
xinx,i + yiny,i√

x2
i + y2

i

, nz = nz,i,

(1)

where θ is the included angle between vectors -N⃗i and ⃗pmi,
β is between vectors N⃗ and M⃗i. Taking this method to
obtain the curvature Co, Ch. For the convenience of future
research, we store these curvatures for direct use by other
researchers. As described in the main paper, Co, Ch are
encoded into high dimension, and the cross-attention fm is
mutually performed on them. fm also possesses 12 heads
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Figure 1. The local coordinates system L with the triangle defined
by the osculating circle neighbor point of p.

and each head with the dimension of 64. The fusion layer
f (Sec. 3.2 in the main paper) is the 1 × 1 convolution
layer, which reduces the fused feature dimension to 768 for
subsequent calculations.

To model the object’s spatial representation, the token
sequence Tsp ∈ R768×3 is concatenated with the seman-
tic token T̄o and the global geometric feature of the object.
With the addition of positional encoding, the concatenate
feature is utilized to query the corresponding feature of the
human through a cross-attention layer fρ. The global ge-
ometric features are obtained by max-pooling F̄co, F̄ch, fρ
has the same architecture with fm.

The decoder has three heads to project the output of hu-
man contact ϕ̄c, object affordance ϕ̄a, and object center po-
sition ϕ̄p. Each head is composed of a linear layer, a batch-
normalization layer, and an activation layer. ϕa is projected
to ϕ̄a ∈ R2048×1, and ϕp is projected to ϕ̄p ∈ R3. For
the contact feature, it is first projected to R1723×1 and then
up-project to ϕ̄c ∈ R6890×1 by another linear layer. We
give the formulation of Lp,Ls in the main paper. Here, we
also provide the formulation of Lc,La, which are the same,
expressed as:

Lc,La =1−
∑N

j yx+ ϵ∑N
j y + x+ ϵ

−
∑N

j (1− y) (1− x) + ϵ∑N
j 2− y − x+ ϵ

+
1

N

N∑
j

[− (1− α)(1− y)xγ log (1− x)

− αy (1− x)γ log (x)],

(2)

where N indicates the number of points within each geome-
try, x is the prediction, y is the ground truth, ϵ is set to 1e-6,
α, γ are set to 0.25 and 2 respectively.

A.2. Benchmark Details

Evaluation Metrics. We refer to methods that estimate
each interaction element to benchmark the 3DIR [11, 19,

39, 45, 51]. Specifically, the Precision, Recall, F1 score,
and geodesic distance are utilized to evaluate the contact
estimation. AUC, aIOU, and SIM are utilized to evaluate
the anticipation of object affordance. MSE is taken to eval-
uate the prediction of objects’ spatial positions. The details
of these metrics are as follows:

− Precision, Recall, F1 [14]: Precision is the ratio of cor-
rectly predicted positive observations to the total pre-
dicted positives, measures the accuracy of the positive
predictions made by a model. Recall is the ratio of cor-
rectly predicted positive observations to all observations
in the actual class and measures the ability of a model
to capture all the positive instances. F1-score is the har-
monic mean of Precision and Recall. It provides a balance
between Precision and Recall, making it a suitable metric
when there is an imbalance between classes. They could
be formulated as:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
2 · Precision ·Recall

Precision+Recall
,

(3)

where TP , FP , and FN denote the true positive, false
positive, and false negative counts, respectively.

− geodesic distance [19]: The geodesic distance is utilized
to translate the count-based scores to errors in metric
space. For each vertex predicted in contact, its shortest
geodesic distance to a ground-truth vertex in contact is
calculated. If it is a true positive, this distance is zero. If
not, this distance indicates the amount of prediction error
along the body.

− AUC [29]: The Area under the ROC curve, referred to
as AUC, is the most widely used metric for evaluating
saliency maps. The saliency map is treated as a binary
classifier of fixations at various threshold values (level
sets), and a ROC curve is swept out by measuring the true
and false positive rates under each binary classifier.

− aIOU [40]: IoU is the most commonly used metric for
comparing the similarity between two arbitrary shapes.
The IoU measure gives the similarity between the pre-
dicted region and the ground-truth region, and is defined
as the size of the intersection divided by the union of the
two regions. It can be formulated as:

IoU =
TP

TP + FP + FN
, (4)

where TP , FP , and FN denote the true positive, false
positive, and false negative counts, respectively.

− SIM [44]: The similarity metric (SIM) measures the sim-
ilarity between the prediction map and the ground truth
map. Given a prediction map P and a continuous ground
truth map QD, SIM(·) is computed as the sum of the
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minimum values at each element, after normalizing the
input maps:

SIM(P,QD) =
∑
i

min(Pi, Q
D
i ),

where
∑
i

Pi =
∑
i

QD
i = 1.

(5)

− MSE [47]: The Mean Squared Error (MSE) is a measure
of the average squared difference between the predicted
and actual values in a regression problem. MSE quanti-
fies the average squared difference between the predicted
and actual values. It penalizes larger errors more heavily
than smaller errors, making it sensitive to outliers. Lower
MSE values indicate better model performance in terms
of regression accuracy. It is formulated as dividing the
total error by n:

MSE =
1

n

n∑
i=1

|ŷ − y|2 , (6)

where y is the prediction, ŷ is the ground truth.
Comparison Methods. Here, we provide an elucidation of
the implementation for the methods employed for compari-
son in the experiment.

− Baseline: The baseline model simply takes modality-
specific backbones to extract respective features of the
image and geometries. Then, it decodes these features
separately to obtain the outputs through three branches.
This verifies the performance when directly treating this
task as a multi-task regression.

− BSTRO [19]: BSTRO takes the HRNet as the image
backbone and concat the human vertices with the ex-
tracted image feature, then it utilizes a multi-layer trans-
former to estimate the contact vertex. We retain the net-
work architecture while introducing a modification: the
vertex of human mesh in BSTRO is downsampled to
431. However, we find that 1723 vertices achieve supe-
rior results through experiments. Consequently, during
the training, the vertices are downsampled to 1723, the
same with LEMON.

− DECO [45]: DECO possesses the scene and part context
branch to parse the semantics in images, thus facilitating
the estimation of human contact. We follow the authors’
instructions, taking the Mask2Former [7] to create scene
segmentation maps for images in 3DIR. Using the scene
and contact branches to train the DECO on 3DIR.

− 3D-AffordanceNet [11]: 3D-AffordanceNet directly uti-
lizes the DGCNN or PointNet++ to extract per-point fea-
tures and decodes them to the affordance representation.
It tends to anticipate all affordances of the object and may
not be consistent with the object affordance in the im-
age. To this end, we slightly modify its structure, taking
a cross-attention to update the geometric feature, with the
point feature as the query and the image feature as key

and value. The affordance representation is obtained by
decoding the updated geometric features.

− IAG-Net [51]: IAG-Net anticipates the object affordance
of objects by establishing the correlations between inter-
action contents in the image and the geometric features
of the object point cloud. We directly utilize the original
architecture of IAG-Net to train on the 3DIR. It is worth
noting that the training of IAG-Net needs the bounding
boxes of the interactive subject and object. We obtain the
bounding box by taking the positions of pixels with the
smallest and largest in horizontal and vertical coordinates
from mask annotations in 3DIR.

− DJ-RN [25]: DJ-RN defines the radius for various types
of objects, using a sphere to represent the object. Which
lifts the spatial relation in images to the 3D space by lever-
aging the bounding boxes of humans and objects in pixel
space and the defined radius. We use its official code to
infer the 3DIR data. Additionally, we make minor adjust-
ments to the radius of objects to match the 3D objects in
3DIR (minimal impact on the results).

− Object pop-up [39]: This method takes vertices of a
posed human as the input, anticipating what objects could
interact with the human and the object’s spatial position.
Since we benchmark it as a comparative method for pre-
dicting spatial relation, the object categories may cause
ambiguity. Thus, we also take the object point clouds as
inputs, integrating the geometric features of humans and
objects to make the spatial prediction.

A.3. Training Details

LEMON is implemented by PyTorch and trained with the
Adam optimizer. The training epoch is set to 100. All train-
ing processes are on 4 NVIDIA 3090 Ti GPUs with an ini-
tial learning rate of 1e-4. The HRNet backbone is initial-
ized with the weights pre-trained on ImageNet [10], while
the point cloud extractor is trained from scratch. The hyper-
parameters ω1−4 that balance loss are set to 40, 40, 20, 20,
respectively, and the training batch size is set to 24.

B. Dataset
We curate a question-and-answer (Q & A) list for readers

to have a clearer and more detailed understanding of the
3DIR dataset by referring to Datasheets [13].
Q1: For what purpose was the dataset created? Was
there a specific gap that needed to be filled? Please pro-
vide a description.
A1: 3DIR is collected to facilitate research of 3D human-
object interaction relation understanding. It contains paired
HOI data and annotations of several interaction elements
that elucidate “where” the interaction manifests between the
human and object, e.g., human contact, object affordance,
and human-object spatial relation. Most existing datasets
enable training task-specific models, making the model per-
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Figure 2. Given the image and mask with an interaction type,
drawing vertices in contact with the object.

ceive a certain element of the human-object interaction in
isolation. However, interaction elements manifest in the
interacting subject, object, and between them. There are
also intricate correlations between the interaction elements.
We aspire to endow the model with a more comprehensive
capacity to understand the interaction relation between hu-
mans and objects. Thus, we collect and annotate the 3DIR.
Facilitating the perception of human-object interaction re-
lation by enabling the model to learn joint anticipations of
interaction elements.
Q2: How many instances are there in total?
A2: There are 5001 in-the-wild images with explicit inter-
action content, and the quantity of 3D object instances in
3DIR is 5143. The whole data spans 21 object classes and
17 interaction categories. Besides, there are over 25k mul-
tiple annotations for these collected data.
Q3: What data does each instance consist of?
A3: A sample of 3DIR contains the following data: 1) an
interaction image; 2) an object point cloud; 3) the SMPL-H
pseudo-GTs; 4) masks of the interacting human and object
in the image; 5) 3D affordance annotation of the object; 6)
dense human contact label; 7) spatial position of object cen-
ters in the same camera coordinate of the fitted human. In
addition, taking the masks could easily calculate the bound-
ing boxes of the human and object.
Q4: Why chose the SMPL-H as the human mesh?
A4: Firstly, SMPL-H and SMPL [30] share the same topol-
ogy, so the model trained with SMPL-H could directly gen-
eralize to SMPL. However, SMPL lacks parameters for the
hands, resulting in some types of grasping interactions that
cannot be presented. Another human model SMPL-X [38],
also includes hand parameters. But it has 10475 vertices and
nearly 50% of the vertices are on the head, which usually
does not greatly impact the interaction. To save the compu-
tational overhead, we ultimately chose to use the OSX [27]

to fit the SMPL-H human mesh.
Q5: Why use the OSX to fit the human body, and how
to implement the pipeline?
A5: In natural interaction images, sometimes only the upper
body of a human is visible, and the model should possess
the ability to predict the human mesh for these cases. OSX
[27] is trained on multiple datasets, such as MPII [1], Hu-
man3.6M [21], AGORA [37]. It masters the prior knowl-
edge of human topology with the training on the above
datasets. In addition, it provides a pipeline to fit the UBody
dataset. The models trained on UBody perform well in
predicting situations where only the upper body is present.
Therefore, we use the same pipeline as UBody to fit the
human mesh of 3DIR. To maximize the utilization of the
pre-trained OSX, we still retained the face decoder, and the
SMPL-X humans are transferred to SMPL-H through the
official script in SMPL-X [38].
Q6: What mechanisms or procedures were used to col-
lect and annotate the data (e.g., software program, soft-
ware API)?
A6: Images are collected from HAKE [26], V-COCO
[15], PIAD [51] and websites with free licenses. The
3D object instances mainly come from PartNet [32], 3D-
AffordanceNet [11] and Objaverse [9]. The objects selected
from Objaverse are downloaded through its official API. For
multiple annotations, we used several tools to implement
them respectively. 1) We leverage the ISAT [52] to anno-
tate the human and object masks. It integrates the SAM [24]
and can perform interactive semi-automatic annotation. 2)
The software MeshLab [36] is utilized to “draw” the dense
human contact vertices. In which mesh could be translated,
rotated, and zoomed in/out, it also supports drawing colors
on the mesh vertices. As shown in Fig. 2, we pin the image
and mask onto the screen, and annotators color the vertices
on the human body that are in contact with the object. The
contact vertices are captured based on their color through a
script. 3) We refer to the 3D-AffordanceNet [11] to annotate
the object affordance. The object instances are imported to
the MeshLab and we color the affordance key points and the
propagable region. Their coordinates are recorded, and the
remaining propagation steps and algorithms are consistent
with 3D-AffordanceNet. Please refer to it for more details.
4) With the contact annotation, we color the fitted human
mesh and import it into the Blender [8] to annotate the ob-
ject’s spatial position. Specifically, we create geometric and
material nodes for annotators to view the contact on the hu-
man body. In conjunction with the image, annotators need
to adjust the position of the sphere (object proxy) with pre-
defined radii to align the human-object spatial relation in
the image, as shown in Fig. 3. The criteria for defining the
radius of the object is clarified in Q7.
Q7: How to define the radius of the object’s proxy
sphere? Please provide a detailed description.
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Figure 3. Adjust the spatial position of the proxy sphere to align
with human-object spatial relation in the image by referring to the
image and contact vertices.

Table 2. The defined radii for each object category, unit: m.

Backpack 0.265 Bottle 0.140 Mug 0.094
Baseballbat 0.325 Suitcase 0.332 Vase 0.197
Skateboard 0.375 Bicycle 0.675 Bowl 0.132

Tennisracket 0.298 Scissors 0.179 Chair 0.455
Surfboard 0.687 Keyboard 0.217 Knife 0.173
Motorcycle 0.710 Earphone 0.132 Bag 0.192
Umbrella 0.372 Guitar 0.394 Bed 1.154

A7: We define the object’s proxy radius relative to the fit-
ted human mesh. As the fitted human body’s unit measure-
ments in the coordinate system match the real world, defin-
ing objects’ radii in this way closely aligns with the actual
size of objects. For each object category, we import 20 in-
stances into Blender and scale them to match the human
size. Then, the center of the proxy sphere is moved to the
object’s geometric center, adjusting the sphere radius to just
envelop the object. We record each radius and calculate the
mean as the proxy sphere radius for each object category.
Note that these radii could be used as a basis for further tun-
ing through the mask ratio of humans and objects, the ratio
of bounding boxes in the image, or others. The defined radii
are shown in Tab. 2.
Q8: When fitting the human body, there are already as-
sumed camera optical centers and focal lengths. Why
not directly project the center of the object in the 2D
image into 3D space?
A8: The spatial annotation of the object center is conducted
within the same camera coordinates as fitted humans. For
in-the-wild images, HMR (human mesh recovery) methods
mostly take weak-perspective camera models to project the
human mesh [18, 22] to the image plane. Which consid-
ers the depth to be relatively uniform for the human in-
stance. Therefore, directly back-projecting the objects’ cen-
ters from images into 3D space will cause depth ambiguity.
This is also explained in DJ-RN [25], where they further
determine the depth of objects by defining their radii. For
HOIs, the relative depth between humans and objects is cru-
cial for representing their spatial relation. So, based on the
camera scale s and translation t inferred by OSX, we manu-
ally annotate the objects’ center positions at the same cam-
era coordinates as the fitted humans.

Q9: How to ensure the quality of annotation in the pro-
cesses?
A9: We conduct subjective cross-checks and objective mea-
suring to ensure the quality of the annotations. In spe-
cific, we initially release the annotation requirements and
recruit a cohort of annotators. For the contact annotation,
we provide 100 author-annotated instances, as well as de-
tailed annotation instructions and software tutorials. Then,
the annotators make annotations for these 100 samples fol-
lowing the instructions. Referring to DAMON [45], the
Intersection-over-Union (IOU) is calculated between the
author-annotation and annotations made by candidate an-
notators. For the objects’ spatial positions, we select 100
instances from the BEHAVE [3] dataset and record the co-
ordinates of the objects’ geometric centers. The annota-
tors are required to annotate the objects’ positions accord-
ing to the manner in Q6. The MSE is calculated between
the ground truth in BEHAVE and annotations. Eventually,
we select 5 qualified annotators through the evaluation re-
sults. These 5 annotators conduct three rounds of annota-
tion, with each round involving subjective cross-check and
author-check to filter out instances with glaring annotation
errors. Besides, for each instance, we cyclically use the
annotation of each annotator as a temporary reference and
calculate the measurement metrics (IOU, MSE) between it
and the remaining annotations. A re-annotation process will
be initiated if there is significant variance among the met-
rics. We choose the temporary annotation with the mini-
mum variance in metrics as the final annotation. The object
affordances are annotated by authors. We train IAG-Net
[51] on 10 object categories we annotated and 11 categories
selected from 3D-AffordanceNet. The AUC and aIOU for
our annotated data are 85.15, 37.93, while for the selected
data are 85.76, 37.82. This indirectly indicates that the qual-
ity of our annotations is comparable to existing annotations,
which could effectively support the model training.
Q10: Are there any errors, noise, or redundancies in the
dataset? If so, please provide a description.
A10: Since some annotations are based on human knowl-
edge, e.g., human contact, some annotations may not be
completely accurate. However, these will not seriously im-
pact the final results. Similar to those instances in the DA-
MON [45] and HOT [6] dataset.
Q11: Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by le-
gal privilege or includes the content of individuals non-
public communications)?
A11: No.
Q12: Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety?
A12: No.
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Table 3. Comparison of contact estimation on DAMON dataset.

Method Precision Recall F1 geo. (cm)

BSTRO 0.57 0.58 0.53 28.81
DECO 0.64 0.60 0.59 19.98
Ours P. 0.69 0.62 0.61 14.75
Ours D. 0.67 0.66 0.63 13.45

Table 4. Take BEHAVE as the unseen dataset. (a) Comparison of
contact estimation on BEHAVE dataset. (b) Comparison of spatial
prediction on BEHAVE dataset.

Method Precision Recall F1 geo. (cm)

BSTRO 0.03 0.11 0.05 48.37
DECO 0.13 0.25 0.17 40.45
Ours P. 0.17 0.27 0.20 35.14
Ours D. 0.19 0.30 0.21 29.82

(a)

Method MSE

DJ-RN 0.287
PopUp 0.149
Ours P. 0.098
Ours D. 0.084

(b)

Table 5. Object affordance anticipation on PIAD dataset. Seen
and Unseen are two settings, 3D-Aff. denotes 3D-AffordanceNet.

Method Seen Unseen

AUC aIOU SIM AUC aIOU SIM

3D-Aff. 83.07 16.65 0.46 59.51 3.87 0.323
IAG 84.85 20.51 0.54 64.14 7.35 0.346

Ours P. 85.64 22.98 0.56 65.96 7.88 0.351
Ours D. 86.07 23.16 0.56 66.22 8.23 0.355

C. Experiments
We conduct more experiments to verify the superiority of

the LEMON. The details are described as follows.

C.1. Test on Multiple Datasets

DAMON Dataset [45]. We select around 3k data from
DAMON that match the object categories in 3DIR, divide
the training and testing sets in an 8 : 2 ratio and train the
comparison methods. The training of DECO here is consis-
tent with its original architecture, using the scene, part, and
contact branches. The human meshes used in LEMON are
directly inferred through OSX accompanied by a transfer-
ring process, without the fitting pipeline that is illustrated in
Sec. B Q5. Evaluation results are recorded in Tab. 3.

BEHAVE Dataset [3]. The BEHAVE dataset is utilized
as an unseen dataset to evaluate both the contact estimation
and spatial prediction. For the object position, we record the
geometry center of aligned objects in the BEHAVE. Each
comparison method is only trained on the 3DIR dataset and
tested on the BEHAVE dataset. The metrics of both the
contact and spatial prediction are shown in Tab. 4.

PIAD Dataset [51]. We conduct tests with two settings
on PIAD. 1) Seen: as many images in the PIAD dataset
do not include complete humans, the template human is

Table 6. HPS estimation performance using contact derived from
different sources.

Methods ✗ Contact Prox HOT DECO LEMON GT

V2V ↓ 183.3 174.0 172.3 171.6 170.9 163.0

Table 7. The influence of learning rate (Lr) and batch size (B). The
best results are covered with the mask.

Lr B Contact Affordance Spatial

Pre. Rec. F1 geo. AUC aIOU SIM MSE

1e-3 16 0.76 0.77 0.75 8.67 87.26 40.52 0.59 0.017
1e-4 16 0.76 0.80 0.76 7.98 87.97 40.86 0.62 0.013
1e-5 16 0.78 0.79 0.76 7.85 88.02 41.10 0.62 0.014
1e-3 24 0.77 0.77 0.78 7.86 87.69 40.77 0.62 0.013
1e-4 24 0.78 0.82 0.78 7.55 88.51 41.34 0.64 0.010
1e-5 24 0.76 0.75 0.75 8.14 87.57 40.63 0.59 0.016
1e-3 32 0.79 0.80 0.78 7.63 88.35 41.28 0.64 0.010
1e-4 32 0.78 0.80 0.77 7.67 88.29 41,02 0.62 0.012

Table 8. Performance of the model under different quantities of
human vertices.

Vertices Contact Affordance Spatial

Pre. Rec. F1 geo. AUC aIOU SIM MSE

431 0.75 0.78 0.74 12.13 87.52 39.89 0.61 0.012
1723 0.78 0.82 0.78 7.55 88.51 41.34 0.64 0.010
6890 0.79 0.80 0.78 7.62 88.32 41.53 0.63 0.009

Table 9. Performance of object spatial position prediction when
using different positional encoding methods. P.E. indicates posi-
tional encoding.

w/o P.E. Learnable Sine & Cosine Relative

MSE 0.017 0.010 0.012 0.014

utilized to train LEMON on PIAD. 2) Unseen: PIAD and
3DIR have 11 overlapping object categories, so we train
methods on 10 categories in 3DIR (not included in PIAD)
and test them on the 11 categories (regarded as unseen data)
in PIAD. The results of “Seen” and “Unseen” settings are
recorded in Tab. 5.

Following DECO [45] and HOT [6], we evaluate
whether the estimated contact by LMEON benefits human
pose and shape (HPS) regression. The test is on the PROX
“quantitative” dataset [16], and the experimental setup is the
same with DECO and HOT. Since LEMON focuses on esti-
mating vertices that are in contact with objects, the neglect
of estimating the contact between feet and the ground has a
certain impact on the results. Thus, we fine-tune LEMON
on the DAMON dataset and give the results in Tab. 6.
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Table 10. Evaluation metrics for each object. Ear. is Earphone, Baseb. is Baseballbat, Tenn. is Tennisracket, Motor. is Motorcycle, Back.
is Backpack, Kni.is Knife, Bicy. is Bicycle, Umbr. is Umbrella, Keyb. is Keyboard, Bott. is Bottle, Surf. is Surfboard, Suitc. is Suitcase,
Skate. is Skateboard. P. indicates take PointNet++ as the point cloud backbone while D. indicates DGCNN.

Metr. Ear. Baseb. Tenn. Bag Motor. Gui. Back. Chair Kni. Bicy. Umbr. Keyb. Scis. Bott. Bowl Surf. Mug Suitc. Vase Skate. Bed

L
E

M
O

N
P.

Prec. 0.97 0.75 0.80 0.29 0.90 0.73 0.72 0.77 0.75 0.84 0.70 0.67 0.35 0.71 0.76 0.85 0.67 0.93 0.73 0.79 0.75
Rec. 0.94 0.87 0.86 0.43 0.88 0.75 0.69 0.89 0.84 0.86 0.86 0.84 0.54 0.83 0.81 0.84 0.59 0.94 0.84 0.94 0.77
F1 0.95 0.79 0.8 0.33 0.88 0.72 0.69 0.79 0.78 0.84 0.76 0.73 0.34 0.73 0.75 0.84 0.60 0.94 0.76 0.84 0.74

geo. 1.54 2.94 13.75 37.27 2.34 3.30 7.25 3.97 16.39 6.26 22.08 18.65 32.75 24.19 3.37 5.70 19.77 0.25 3.39 3.91 4.38

AUC 86.85 94.41 97.09 92.08 97.67 96.28 90.49 94.32 82.67 83.78 95.78 86.2 64.86 68.44 68.55 77.43 82.75 91.4 69.77 91.98 89.71
aIOU 23.71 63.12 58.12 38.76 51.64 71.05 50.8 36.18 9.62 35.50 59.24 15.06 5.12 11.99 3.63 42.05 32.029 50.42 5.02 76.21 23.40
SIM 0.61 0.74 0.70 0.47 0.63 0.82 0.64 0.71 0.60 0.44 0.66 0.26 0.41 0.60 0.79 0.39 0.64 0.55 0.67 0.85 0.59

MSE 0.016 0.012 0.028 0.022 0.012 0.009 0.032 0.01 0.008 0.007 0.010 0.008 0.008 0.006 0.004 0.012 0.008 0.018 0.003 0.008 0.048

L
E

M
O

N
D

.

Prec. 0.95 0.77 0.83 0.38 0.89 0.74 0.77 0.81 0.80 0.82 0.74 0.69 0.37 0.75 0.80 0.85 0.68 0.95 0.74 0.80 0.78
Rec. 0.95 0.87 0.84 0.46 0.89 0.73 0.69 0.86 0.79 0.89 0.87 0.79 0.67 0.78 0.81 0.82 0.76 0.94 0.82 0.89 0.79
F1 0.95 0.80 0.82 0.40 0.88 0.71 0.69 0.80 0.78 0.84 0.78 0.71 0.42 0.74 0.78 0.82 0.69 0.94 0.76 0.83 0.77

geo. 0.70 2.47 12.18 31.53 2.78 3.51 4.02 3.11 9.94 6.62 23.97 16.09 27.43 17.91 3.59 5.86 11.87 0.04 2.92 1.95 2.73

AUC 87.90 97.45 98.99 93.04 97.92 97.74 95.49 94.23 82.02 87.10 96.88 86.67 75.96 69.16 66.69 73.67 83.16 84.83 72.08 93.64 87.66
aIOU 22.01 69.37 71.03 43.84 53.04 72.65 60.33 36.68 9.56 31.09 60.59 16.72 5.46 12.76 3.48 41.36 32.94 41.45 5.29 79.70 21.63
SIM 0.61 0.81 0.78 0.48 0.64 0.84 0.7 0.69 0.61 0.40 0.69 0.28 0.46 0.60 0.79 0.37 0.65 0.51 0.68 0.87 0.57

MSE 0.002 0.007 0.025 0.019 0.008 0.007 0.021 0.011 0.005 0.007 0.012 0.006 0.004 0.006 0.003 0.008 0.003 0.030 0.002 0.005 0.040

C.2. Hyperparameters

During the training process, some hyperparameters have
impacts on the model performance. We provide a series
of experiments to determine the ultimate hyperparameters.
All experiments are conducted when taking DGCNN as the
point cloud backbone. Concerning the impact of learning
rate and batch size on the model, we conduct comparative
experiments by adjusting the learning rate across orders of
magnitude and combining it with different batch sizes. The
results are presented in Tab. 7. Besides, we test whether
the quantity of human vertices influences the model per-
formance. The quantity of object points is consistent with
3D-AffordanceNet and IAG-Net. The results are shown in
Tab. 8. As can be seen, when the number of vertices in-
creases from 431 to 1723, there is a significant increase in
model performance. However, the growth is not significant
when increasing from 1723 to 6890. To conserve computa-
tional overhead, we ultimately chose to sample the number
of human vertices at 1723. We also test the performance of
several position encoding methods in object spatial position
prediction. The results are reported in Tab. 9. For w1−4

that balance the loss, we test them according to the order of
magnitude and multiples, and finally determine their spe-
cific values. Due to the excessive number of combinations,
we do not exhibit the results one by one here.

C.3. More Results

In the main paper, we provide overall results of met-
rics and some visualization results of LEMON on the 3DIR
benchmark. Here, we show evaluation metrics for each ob-
ject category and more visualization results that are not pre-

sented in the main paper. The metrics for each object are
shown in Tab. 10. Fig. 4 and Fig. 5 demonstrate more
visual results, including human contact, object affordance,
and spatial relation. For the experiments in Tab. 4, we also
provide some visual results of LEMON, shown in Fig. 6.

D. Application Prospect

The human contact, object affordance, and human-object
spatial relation are crucial elements for representing the
human-object interaction relation. Perceiving these ele-
ments also links the HOI understanding with downstream
applications.

Embodied AI [43]. One characteristic of embodied in-
telligence is to learn and improve skills by actively inter-
acting with the surrounding environment [33]. However,
the prerequisite for actively interacting with the environ-
ment is the ability to perceive or understand how to inter-
act [12, 34]. Learning and understanding interactions from
human-object interaction is an effective manner. The in-
teraction elements reflect how the interaction is manifest at
the counterparts. For example, object affordance represents
what action could be done for the object and which location
supports the action, revealing “where to interact”. Human
contact represents the regions capable of interacting with
objects on the embodiment, revealing “where are utilized to
interact”. Spatial relation connects the interacting subject
and object. These elements collectively formulate the inter-
action relation. Perceiving interaction elements enables the
embodied agent to make policies on how to interact with the
environment, thereby learning from interactions.

Interaction Modeling. Modeling or recovering the in-
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Figure 4. More visual results anticipated by LEMON, including human contact, object affordance, and human-object spatial relation.

teraction is a significant but extremely challenging task.
It holds significant prospects for application in the anima-
tion and digital avatar industries. Some methods have ex-
plored the benefits of human contact in interaction model-
ing [17, 48–50, 53]. But obviously, human contact is only
one aspect of the interaction relation. In addition to this, ob-
ject affordance and human-object spatial relation also offer
clues for interaction modeling. The exploration of incor-
porating more comprehensive representations of interaction
relation (e.g., affordance, spatial relation) into interaction
modeling is a worthy investigated future research direction.
Which may further advance the modeling of interactions.

Augement & Virtual Reality. With the emergence of
immersive spatial computing devices, e.g., Meta Quest, Ap-
ple Vision Pro [46], and PICO, AR/VR will permeate many
industries such as education, healthcare, gaming, and so

on. The way of human-computer interaction (HCI) [5, 31]
is a crucial symptom node for these devices. Perceiving
3D human-object interaction relation in the virtual or aug-
mented world provides feedback signals to adjust the man-
ner of HCI, thereby enhancing the user’s immersion.

Imitation Learning [20]. Imitation learning is an im-
portant way to drive robots to complete certain tasks, which
makes intelligent agents perform interactions by observing
demonstrations from humans or other sources. The interac-
tion elements perceived from 3D human-object interactions
offer explicit representations to reveal “what” interaction
could be performed with an object and “how” to interact
with it. These rich interaction priors enhance the machine’s
ability to imitate the interaction manners, thereby learning
skills from them. Which is beneficial for configurations like
dexterous hand [2, 28] and humanoid robot [4, 23, 35].
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Figure 5. More visual results anticipated by LEMON, including human contact, object affordance, and human-object spatial relation.
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