
Language-driven All-in-one Adverse Weather Removal
Supplementary Material

We provide details of our LDR framework omitted in
the main paper, and summarize this supplementary material
into three sections: 1) Sec. 1, LDR implementation details;
2) Sec. 2, ablation studies; 3) Sec. 3, additional quantitative
and qualitative comparisons.

1. Implementation Details
Our network architecture is given in Fig. 1. We adopt a
multi-input and multi-output network architecture [4, 5, 13],
incorporating the SFE block [4] and SF block [5] into our
backbone network. Following each SF block, we append
our language-driven restoration (LDR) block, which con-
sists of degradation prior embedding, degradation map mea-
surement, Top-K expert restoration, and restoration fea-
ture aggregation. We use a base channel of 32, and dou-
ble/halve the number of channels after each downsam-
pling/upsampling layer. Within our network, we utilize a
pre-trained LISA-7B [6] to generate degradation priors.

The ‘BestT’ in Tab. 1 and Tab. 2 of the main paper de-
notes the best task-specific model. We report the best task-
specific results by selecting state-of-the-art (SOTA) derain-
ing [3], dehazing [15], desnowing [19] and raindrop re-
moval [17] works. The best results are obtained by using
state-of-the-art methods’ pre-trained models directly, fine-
tuning them, or retraining them.

2. Ablation studies and Discussions
We validate the effectiveness and components of our frame-
work on the All-weather [10] dataset.

Pre-trained Vision-language Model. We compare pre-
trained vision-language models (PVL) in generating degra-
dation for our LDR framework, and the results are given
in Tab. 1. Three state-of-the-art PVL models are stud-
ied, namely, the LISA [6], BLIP-2 [9], and miniGPT-v2
[1]. We achieve the best restoration performance with the
degradation prior from LISA. Our LDR framework consis-
tently outperforms the state-of-the-art method [20] with a
PSNR/SSIM of 28.78 dB/0.909 (Refer to Table 1 in the
main paper), regardless of the PVL model.

Degradation Prior Component. Our degradation prior
has two components, degradation type, and degradation rea-

Table 1. Comparison results of using different PVL models.

PVL PSNR↑ SSIM↑

BLIP-2 29.55 0.912
miniGPT-v2 29.63 0.914
LISA (Ours) 29.75 0.916

Table 2. Comparison of degradation priors. NA is short for not
applied.

Degradation Type W/. Reason PSNR↑ SSIM↑

LISA NA 29.43 0.910
LISA (Ours) LISA 29.75 0.916

GT NA 29.58 0.912
GT LISA 29.84 0.917

Table 3. Comparison of question prompts.

Question Prompt PSNR↑ SSIM↑

T1 29.66 0.915
T2 29.61 0.914

T3 (Ours) 29.75 0.916

son (e.g., severity and occurrence). The effectiveness of the
two components is studied in Tab. 2. We compare the re-
sults of our model using three different degradation priors:
1) LISA classified degradation type, 2) ground truth (GT)
degradation type, and 3) GT type augmented LISA, as the
degradation prior separately.

For the GT type augmented LISA, the GT degradation
type is provided to LISA to reason about degradation prior.
With the inclusion of the degradation reason, the network
is capable of improving the restoration performance. For
example, GT type augmented LISA (29.84 dB) has a 0.26
dB improvement in PSNR compared to using GT Type
alone (29.58 dB) as the degradation prior. Moreover, when
compared with ‘BestT + GT’ that has 29.76 dB/0.916 in
PSNR/SSIM from Tab. 1 of the main paper, GT type aug-
mented LISA achieves a 0.08 dB higher PSNR. This shows
the potential of an all-in-one framework to outperform task-
specific models by leveraging the PVL model’s capacity to
learn accurate shared and task-specific knowledge.
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Figure 1. LDR network architecture. We build a multi-input and multi-output network by using SFE [4], SF [5], and our LDR blocks. The
LDR block is composed of our degradation prior embedding, degradation map measurement, Top-K expert restoration, and restoration
feature aggregation modules as shown in our main paper. Here,‘T’ is the question prompt, and ‘ C⃝’ denotes concatenation. ‘Conv 3×3’ is
a convolution layer with a kernel size of 3. ‘Down-sampling’ is a convolution layer with a stride of 2 and a kernel size of 3. ‘Up-sampling’
is a transposed convolution layer with a stride of 2 and a kernel size of 4.

Question Prompt. We employ GPT-4, guided by the
prompt [Give me some sentences for asking a VQA model
to describe the weather in a picture.], to formulate the
question prompt T for querying the degradation prior from
LISA. The formatted prompts are 1) T1 = [Can you ana-
lyze the weather conditions shown in this image?], 2) T2 =
[Please describe about the weather in the picture.], and
3) T3 = [Please describe the type of weather, intensity,
and obscured areas in the picture.]. We provide examples
of text descriptions obtained by using T1, T2, and T3 in
Fig. 2. The comparison is given in Tab 3. The third prompt
leverages LISA most for reasoning degradation prior, and
achieves the highest performance.

Top-K Expert Restoration. We study the number of can-
didate experts N , selected top-K experts, and expert layers.
The results are given in Tab. 4.

We start with a default configuration, i.e., N = 24, top-
K = 4, expert-layer = 4, and vary each of them indepen-
dently. N is varied from 8 to 40 with a stride 8. Top-K
and expert-layer are varied from 1 to 8 with a stride 2. Re-
ferring to Tab. 3 in the main paper as a reference baseline,
without the Top-K Expert Restoration module (N = 0, top-
K = 0, and expert-layer = 0), our model achieves 29.11
dB in PSNR and 0.902 in SSIM. We find that increasing
the number of parameters improves the restoration perfor-
mance. When N = 24, top-K = 4, and expert-layer = 4,
the relative restoration performance improvement is decel-
erated, and the models with more parameters have similar
performance. Thus, we use them for our framework for bal-
ancing the model efficiency and restoration performance.



Table 4. Ablation study of the number of (a) candidate experts N , (b) selected top-K experts, and (c) expert layer. We vary one of the
variables, fixing N = 24, top-K = 4, and expert-layer = 4. Two lightweight baseline settings are presented as references, ‘B1’ is set to N =
2, Top-K = 1, and expert-layer = 1, and ‘B2’ is set to N = 4, Top-K = 2, and expert-layer = 1.

(a)

N PSNR↑ SSIM↑

B1 29.15 0.903
B2 29.19 0.905
8 29.37 0.909
16 29.60 0.913
24 29.75 0.916
32 29.80 0.916
40 29.77 0.916

(b)

Top-K PSNR↑ SSIM↑

B1 29.15 0.903
B2 29.19 0.905
1 29.50 0.910
2 29.61 0.913
4 29.75 0.916
6 29.78 0.916
8 29.80 0.916

(c)

expert-layer PSNR↑ SSIM↑

B1 29.15 0.903
B2 29.19 0.905
1 29.23 0.907
2 29.53 0.912
4 29.75 0.916
6 29.78 0.916
8 29.83 0.917

Table 5. Quantitative comparison on the restoration of images with mixed degradation.

Method
Snow and Haze Raindrop and Snow Haze and Raindrop Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
AirNet [8] 18.66 0.632 15.22 0.705 16.12 0.752 16.67 0.696

WGWS [20] 20.12 0.667 17.32 0.735 19.23 0.772 18.89 0.724
Ours 22.02 0.705 21.32 0.850 22.14 0.873 21.82 0.809

Y-channel Evaluation. Considering several existing ap-
proaches use Y-channel PSNR and SSIM as the evaluation
metrics, we report the values of our method on the All-
weather dataset as 32.27 (dB) and 0.935, respectively.

Computational costs. Our method is trained on RTX
A6000s, and the parameter numbers, inference time, and
FLOPs are given below.

Method Param. Infer. FLOPs

AirNet [8] 8.9M 0.13s 290G
WGWS [20] 24.4M 0.15s 212G
WDiff [14] 86M 17.16s 13425G
PVL + Ours 7B + 14M 0.39s + 0.08s 635G + 97G

Future Work and Limitation. Our model can be po-
tentially applied to broader image restoration tasks, and
strengthen by using a stronger PVL model than LISA, e.g.,
the recent availability of GPT-4Vision since November 6th,
2023, presents an opportunity for strengthening our model.

In our model, 83% of the inference time is attributed to
LISA. The model inference speed can be improved by dis-
tilling a smaller PVL model than LISA that is customized
to adverse weather. If the intensity of rain is high, it creates
splattering effects when it hits the surface of objects in the
scene. Eliminating this effect remains a challenge for all
methods, including ours.

3. Additional Results
Mixed Degradation. Adverse weather degradation is
usually mixed by multiple degradation types [18]. Hence,

we evaluate the generalization ability of our model
on restoring images degraded by mixed/unencountered
weather in real-world applications. As shown in Fig. 3,
our model and SOTA methods (trained on the All-weather
dataset [10]) are tested on real images with mixed and un-
encountered degradation, e.g., ‘snow and rain’ (1st row),
‘snow and haze’ (2ed-3rd row), ‘snow, rain, and raindrop’
(4th row), as well as ‘rain and haze’ (5th-6th row). More-
over, we provide quantitatively compare with past methods.
We randomly select 300 single-degradation images from the
All-weather dataset, and follow Liu et al. [12] and Li et al.
[7] to synthesize images of mixed degradation. The com-
parison results are shown in Tab. 5 and Fig. 3. Compared
to AirNet [8] and WGWS [20], our method achieves a gain
of 5.15 dB/0.107 and 2.93 dB/0.085 in PSNR/SSIM with
cleaner restorations, showing a better generalization ability
on restoration of images with mixed/unencountered degra-
dation.

All-in-one Restoration. We provide more quantitative
comparison results on the All-weather dataset and the
WeatherStream dataset. The compared baselines are GRL
[11], AirNet [8], TUM [2], Transweather [16], and WGWS
[20]. The results are shown in Fig. 4, Fig. 5, and Fig. 6.
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Please describe about the weather in 
the picture.

The weather in the image is rainy, as 
evidenced by the presence of raindrops on the 
window. The raindrops are visible on the 
window, creating a reflection of the building 
and the street. 

Can you analyze the weather 
conditions shown in this image ?

The weather conditions in the image show 
that it is raining, as evidenced by the 
presence of raindrops on the ground and the 
wet pavement.

Please describe the type of weather, 
intensity, and obscured areas in the 
picture.

The weather in the image is rainy, with the 
building covered in raindrops. The intensity 
of the rainfall is moderate, as the water 
droplets are not too heavy or too light, but 
rather evenly distributed across the scene. 
The image shows a view through a window, 
which is partially obscured by the raindrops

Please describe about the weather in 
the picture.

 The image shows a snowy weather with snow 
falling from the sky, creating a blizzard-like 
atmosphere. The snow is falling heavily, and 
the visibility is reduced due to the snowfall. The 
snow is also falling onto a baseball field.

Can you analyze the weather 
conditions shown in this image ?

The image shows a snowy day with a 
construction site. The presence of snow 
suggests that the weather conditions are cold 
and possibly wintery. 

Please describe the type of weather, 
intensity, and obscured areas in the 
picture.

The weather in the image is snowy, with light 
snow flurries falling from the sky. The snowfall 
is light in intensity, falling towards the road and 
partially obscuring both pedestrians and the 
road.

Please describe about the weather in 
the picture.

The image shows rain falling on a building, 
with the water droplets creating a visual 
effect similar to a stained glass window.  The 
presence of the rain suggests that the weather 
is likely overcast or rainy, and the water 
droplets add a unique and dynamic element 
to the scene.

Can you analyze the weather 
conditions shown in this image ?

The image shows a rainy day with the 
building's exterior being hit by a downpour of 
rain. The presence of the rain suggests that 
the weather conditions are likely to be wet 
and potentially gloomy. 

Please describe the type of weather, 
intensity, and obscured areas in the 
picture.

The weather in the image is rainy, with the rain 
coming down in a heavy manner. The intensity of 
the rain is such that it is obstructing the view of 
the surrounding area, making it difficult to see the 
entire scene. The image shows a park with a few 
statues and a sign, but the view is limited due to 
the heavy rain.

Please describe about the weather in 
the picture.

The weather in the image is characterized by 
a hazy day, which can be observed by the 
presence of a hazy sky. The hazy sky might 
also indicate the presence of fog or smog, 
which can affect the overall appearance of 
the scene and the light reaching the ground.

Can you analyze the weather 
conditions shown in this image ?

The image shows a snowy day with a mix of 
snow and fog. The snow is falling gently, 
creating a tranquil and serene atmosphere. 
The foggy conditions add a sense of depth 
and enchantment to the scene. The presence 
of trees in the image suggests that the 
weather is cold.

Please describe the type of weather, 
intensity, and obscured areas in the 
picture.

The weather in the image is  foggy, with the 
sky appearing overcast and the visibility 
reduced. The fog is dense, and the view of 
the landscape is obstructed by the fog, 
making it difficult to see the details of the 
surrounding environment. 

Figure 2. Examples of text descriptions from LISA [6] for reasoning weather degraded images. From left to right, descriptions are
generated using T1, T2, and T3, respectively. From top to bottom, the degradation is snow, haze, rain and raindrop.
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Figure 3. Quantitative evaluation on our synthesized mixed weather dataset. The top six rows are restorations for mixed degradation in
the real scene, and the bottom three rows are restorations for the synthesized mixed degradation.
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Figure 4. Qualitative comparison on the All-weather dataset. The first column shows degraded images, while the crops for the bounding
box regions of degraded images, ground truth, restorations from SOTA methods and our method are shown in the subsequent columns.
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Figure 5. Qualitative comparison on the All-weather (the first three rows) and WeatherStream (the last three rows) dataset. The first column
shows degraded images, while the crops for the bounding box regions of degraded images, ground truth, restorations from SOTA methods
and our method are shown in the subsequent columns.
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Figure 6. Qualitative comparison on the WeatherStream dataset. The first column shows degraded images, while the crops for the bounding
box regions of degraded images, ground truth, restorations from SOTA methods and our method are shown in the subsequent columns.
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