
A. Algorithm Outline
The algorithm outline is as follows:

Algorithm 1: Switchable backdoor attack against
pre-trained models

Data: Clean images x, Trigger δ, Clean labels y,
Target labels t, Clean tokens P and Switch
token S

Result: Trained claen tokens P ∗, Trained switch
token S∗, Trained trigger δ∗

1 total epoch E ← 100;
2 e← 0;
3 P ←Xavier Uniform Initialization;
4 S ←Xavier Uniform Initialization;
5 δ ←Uniform Initialization;
6 model M ←ViT;
7 while e < E do
8 Lcle (P, δ)← E(x,y)∼D[ℓ(P, x, y) + ℓ(P, x+

δ, y)], s.t. ∥δ∥∞ ≤ ϵ;
9 P ∗ ← P − β∇PLcle;

10 δ∗ ← δ − β∇δLcle;
11 Ff (P

∗, x)←M(x);
12 Lbd (S, δ

∗)←E(x,y)∼D[ℓ(P
∗, S, x, y)+

ℓ(P ∗, S, x+δ∗, t)], s.t. ∥δ∗∥∞ ≤ ϵ;
13 Ff (P

∗, S, x)←M(x);
14 Lcs (S)←

E(x,y)∼D||Ff (P
∗, x)− Ff (P

∗, S, x)||2;
15 S∗ ← S − β∇S(Lbd + λLcs);
16 δ∗ ← δ∗ − β∇δ∗(Lbd + λLcs);
17 e← e+ 1;
18 end

B. Motivation
In practice, diverse downstream tasks need different visual
prompts to adapt the pre-trained model, so it’s realistic that
clients cede the rights of training and managing prompts to
the third-parties and use their APIs. SWARM happens when
the third-party is malicious. Additionally, the motivations
for using a switch mechanism are two facets. Firstly, the
switch mechanism can impart resistance against backdoor
detections and mitigations, a prevalent concern for users
embracing such services. Our experiments show that the
defenses are hard to detect or remove our backdoor when
the model is under clean mode, ensuring the stealthiness
of our attack. Furthermore, the switch mechanism is real-
istic, especially in intricate scenarios where detecting spe-
cific scenes and producing malicious outputs becomes more
challenging for adversaries compared to exploiting triggers
to prompt malevolent output. These two parts greatly in-
crease security risks.

For example, consider a self-driving scenario wherein
an adversary seeks to attack a certain car. When the car
starts, the adversary can simply activate the switch prompt,
thereby transitioning the model into backdoor mode, and
making the self-driving system be aware of the trigger in the
driving scene. The influence of such an exploit is calami-
tous, given that this backdoor remains impervious to de-
tection and mitigation in the clean mode during the regular
check, amplifying the severity of its impact.

As is mentioned above, we can set the model to clean
mode under normal circumstances to avoid detection and
mitigation. The transition to the backdoor mode occurs se-
lectively, specifically when an adversary endeavors to ex-
ecute an attack. Since the backdoor defenses require re-
sources, the users can not implement the detection fre-
quently. Consequently, it contributes to an extremely low
probability of detection out due to the rare overlap in time,
aligning with the overarching objective of maintaining the
effectiveness of the backdoor under such circumstances.

C. Implementation Details
In summary, we have done all the experiments by the frame-
work of PyTorch [20] on Nvidia RTX3080 GPUs with
12GB memory.

C.1. Models and Datasets

Models. In all, we have used three different upstream back-
bones in the experiments. They are ViT [4], Swin [17] and
ConvNeXt [18]. Here, we give the detailed implementa-
tions of these models including the pre-trained objective,
pre-trained datasets, the number of parameters, and the fea-
ture dimensions. As is shown in Tab. 1, all the upstream
backbones are trained on ImageNet-21k [2], but they have
different numbers of parameters, feature dimensions, and
the most important point, the model architectures. Our
method shows robustness to different backbone architec-
tures.
Datasets Used for Defense. As is shown in Tab. 4, we
choose four datasets to evaluate attacks’ performance on re-
sisting detection methods and mitigation methods. In these
datasets, CIFAR100 [12] is a classical dataset widely used
in adversarial and backdoor areas which is a good reference
to be compared to the methods in the former works. It has
10000 samples and 100 classes as the testset. The other
three datasets are chosen from VTAB-1K [24] as the repre-
sentatives of natural, specialized, and structured tasks. They
all have relatively more classes and test samples compared
to the datasets belonging to the same kinds so they are more
difficult to be attacked.

C.2. SWARM Setups

Prompts setups. For the number of clean tokens, it is not
always good to increase it for different datasets. As a trade-



Table 1. Specifications of different pre-trained backbones we used in the paper. All backbones are pre-trained on ImageNet-21K with the
resolution of 224× 224.

Backbone Pre-trained Objective Pre-trained Datasets params(M) Feature dim
ViT-B/16 Supervised ImageNet-21k 85 768
Swin-B Supervised ImageNet-21k 88 1024

ConvNeXt-Base Supervised ImageNet-21k 88 1024

off, we chose 50 clean tokens for the downstream datasets
and they show good performance on different datasets and
different backbones. As the same as VPT [10], we initial-
ize these prompts with Xavier uniform initialization scheme
[7]. We also follow the original backbone’s design choices,
such as the existence of the classification tokens [CLS], or
whether or not to use the final [CLS] embeddings for the
classification head input.
Training details. For the learning rates and decays, dif-
ferent datasets have various best parameters and it is diffi-
cult for us to find the best learning rate and decay under the
condition of a backdoor attack so we directly utilize these
parameters provided by the VPT. In addtion, we have the
extra part needed to be learned, they are switch token and
the trigger. These parameters also adopt the same learning
parameters as the clean tokens to ensure its convergence.

And for the learning scheme, we also follow the settings
of VPT. We used the cosine schedule to train the models
and trained 100 epochs to get the final result. The warm-up
epochs are 10 and the optimizer is SGD [21]. For the mo-
mentum, we set 0.9 to keep the settings with VPT. Because
of the limit of gpu memory and the cross-mode feature dis-
tillation loss, we set the batch size of the prompting to 8 but
they still have the competitive performance.
Augmentation. We use the standard image augmentation
strategy during the training process: normalize with Ima-
geNet means and standard deviation, resize the images to
224× 224. No any other data augmentation are used except
for these methods.
Attack setups. For the backdoor attack, we only adopt one
token as our switch. The target labels in our experiments
are all 0 and the ϵ is set to 4. As mentioned in the paper, we
use clean loss and backdoor loss to implement the switch-
able mode. The clean loss and backdoor loss have the same
hyperparameter so they are 1:1. Meanwhile, the amount of
the clean images used is the same as the triggered images
used in the training process.

C.3. Baseline Attack Setups

Since the baseline attacks we chose are all poison-based
attacks. We set the poison rate to 20% to ensure the at-
tack success rate in the downstream tasks. Moreover, we
have done the data augmentation that resized the images to
224 × 224 and the triggers we used in the baseline attacks
also needed to be tailored to the according size.

Settings for BadNets. As suggested in [8], a 3 × 3 square
on lower right corner is used in the CIFAR10 [12] whose
images’ size are 32 × 32. So we change the trigger size to
21× 21 tailored to the 224× 224 input images.
Settings for Blended. We choose a white square with a
black background as our trigger, the blend ration is set to
0.2. The other hyperparameters are kept the same as the
original paper [1].
Settings for WaNet. As suggested in [19], we use the de-
fault warping-based operation to generate the trigger pat-
tern. We set the noise rate ρn = 0.2, control grid size k = 4,
and warping strength s = 0.5.
Settings for ISSBA. For ISSBA [13], we set the secret size
to 20 and use binomial to initialize the secret. While the
other parts of the attack setups are kept the same as the
original paper. The encoder used here is the StegaStamp-
Encoder [22], which is uesd to write a watermark into the
images.

C.4. Defenses Setups

In the detection defenses, we choose the 3000 clean samples
and 3000 triggered samples to do the detection and calculate
the metrics. In backdoor mitigation, we use an extra 1000
clean test samples to tune the model to obtain the backdoor-
free model.
Settings for Scale-Up. As suggested in the [9], we follow
the same settings as the paper mentioned. We amplify the
images’ pixels for 1 to 11 times to get the final test datasets.
And this testset is evaluated on the model and calculate the
AUROC to evaluate the consistency.
Settings for TeCo. Teco [16] uses the image corruption
and then evaluate the prediction results’ consistency to de-
termine whether a model is backdoored. The image corrup-
tions we used here are gaussian noise, shot noise, impulse
noise, defocus blur, motion blur, snow, frost, fog, bright-
ness, contrast, elastic transform, pixelate and jpeg compres-
sion. The backdoored model has different prediction results
on triggered images under these image corruptions.
Settings for NAD. Neural Attention Distillation (NAD)
[14] is a backdoor mitigation method that employs a teacher
network trained on a small clean data subset to guide the
fine-tuning of the backdoored student network, ensuring
alignment of intermediate-layer attention. Here, we only
choose the attention layer after the prompt input layer from
the teacher net to instruct the learning of the student net.



Table 2. The average results on VTAB-1k of TUAP and SWARM.

Metrics BA ASR
TUAP 57.27 92.39

SWARM-B 59.95 97.90

Table 3. The average results on VTAB-1k of Dual-key and
SWARM. Besides, P-ASR and I-ASR are the metrics to evaluate
the bias problems.

Metric BA ASR P-ASR ACC I-ASR
Dual-key 43.73 55.33 41.13 43.68 53.84

SWARM-B 59.95 97.90 14.36 61.50 11.87

Table 4. Datasets used for backdoor defenses which are chosen
from VTAB-1k. These four datasets have covered all kinds of
datasets in the benchmark. They all have over 5000 test samples
and the natural tasks have over 100 classes.

Datasets Description Classes Train Val Test
CIFAR-100 Natural 100 800/1000 200 10,000
Caltech101 102 800/1000 200 6,084
EuroSAT Specialized 10 800/1000 200 5,400
DMLab Structured 6 800/1000 200 22,735

The reason is that in our scenario, only the parameters of
the prompts are updated. We set the power of the hyper-
parameter for the attention loss to 5.0 and beta to 500. The
learning of the teacher network is set to 10 epochs with a
learning rate of 0.01 by SGD. Moreover, the distillation pro-
cess is 20 epochs with an initial learning rate of 0.01 and
decay in the 4th, 8th, 12th, and 16th epochs.
Settings for I-BAU. I-BAU [23] is a backdoor mitigation
method that leverages implicit hyper gradient to account for
the interdependence between inner and outer optimization.
To solve the min-max problem in this method, we choose
the Adam [11] as our optimizer and to mitigate the influence
of the I-BAU on benign accuracy, we set the learning rate to
0.0005 since the Adam has a good convergence speed and
it still has a good performance on the attacks.

D. Extra Experiments

D.1. Differences from TUAP and Dual-key

In this part, we supplement two extra baseline attacks to
compare their performance with our SWARM. TUAP and
our SWARM use optimizing-based triggers, but TUAP only
relies on the image trigger without considering the switch
mechanism and has inferior performance as shown in Table
2. Bsides, Dual-key is a backdoor attack on VQA, using
a fixed textual trigger, while switch token is learnable. It
leads to the bias phenomenon, the textual trigger alone acti-
vates the backdoor on almost 30% of questions as reported
in paper, which makes it infeasible to apply Dual-key-like

methods to achieve the switch mechanism. The results are
shown in 3.

D.2. Robustness to Patch Processing

Since the Patch Processing[3] is a specific backdoor defense
method designed for the vision transformers, we also eval-
uate SWARM’s robustness to it. The results are shown in
6 and they indicate our method’s robustness to the method
specially designed for the ViTs. In summary, our method
keeps high ASR-D and low AUROC under the detection
which surpasses all other baseline methods.

D.3. Ablation Study on Trigger Learning

In this part, we supplement the extra content of the ablation
study which focuses on trigger learning. Although the ran-
dom noise sampled from the uniform distribution can also
act as a trigger, the learning method can provide a better per-
formance both on benign accuracy and attack success rate
which is very important in our method.

As we can see in Tab. 5, without trigger learning in clean
mode, the visual prompts have an obvious accuracy drop
especially in the triggered images in the clean mode while
ASR has no performance decrease. In contrast, without trig-
ger learning in backdoor mode, both BA and ASR suffer a
big drop in backdoor mode. And finally, if we keep the
random noise as the trigger, the backdoor attack can not be
established successfully since the BA in backdoor mode is
very low.

All the experiments on three datasets have shown the
trigger learning’s importance in our method. The trigger
learning in two modes has balanced the performance on be-
nign accuracy and the attack success rate.

In all, each component in our method has been analyzed
and shows its indispensability in our method.

D.4. Effect of ϵ

As is shown in Fig. 1, we evaluate the effect of the ϵ on
CIFAR100. The ϵ is the noise limit implemented on the
trigger. The l∞ restriction is used here so ||δ||∞ ≤ ϵ. When
the ϵ = 0, it means that we don’t adopt the trigger in our
method. In Fig. 1, ϵ = 0 makes the benign accuracy drop a
lot. With the increase of the ϵ, the performance on BA and
ASR both in clean mode and backdoor mode has improved
and achieved the peak when ϵ = 4. And the performance
keep stable with the ϵ goes on increasing.

D.5. Effect of Prompt Length

As is shown in the Fig. 2, the experiments are done on CI-
FAR100. Even when the prompt length has a big variance,
our method still has a stable effect on attacking the model.
When the prompt length is 10, the triggered images have
a 4% drop compared to the peak in BA-T in clean mode.
The BA in backdoor mode also suffers a drop. However,



Table 5. Results on the effect of the trigger learning. In each step, the learning of the trigger is indispensable since it can improve the
performance both in BA and ASR. Three datasets show the correctness of our analysis.

/ Dataset CIFAR100 Flowers102 Pets
Mode Metric w/o δclean w/o δbackdoor w/o δ w/ All w/o δclean w/o δbackdoor w/o δ w/ All w/o δclean w/o δbackdoor w/o δ w/ All

SWARM-B BA 72.33 56.13 28.21 76.36 93.54 70.47 65.49 93.53 80.73 52.82 45.68 86.02
ASR 98.04 70.92 86.72 96.96 93.44 32.75 60.20 96.99 79.20 53.15 64.40 98.53

SWARM-C BA 74.41 73.87 74.10 76.41 94.35 96.24 97.02 96.80 86.51 86.32 86.18 86.64
BA-T 70.93 74.03 73.99 76.38 94.17 96.50 97.08 96.93 86.15 86.62 86.45 86.43

Table 6. Patch processing defense on 6 attack methods and the re-
sults are the average of four datasets(CIFAR100, Caltech, DMLab,
EuroSAT).

Datasets Average
Metrics AUROC ASR-D
BadNets 0.5669 37.84
Blended 0.5696 44.93
WaNet 0.4921 37.12
ISSBA 0.5891 41.07

SWARM 0.5003 58.48
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Figure 1. The effect of increasing the ϵ. If ϵ is 0, the benign
accuracy in the backdoor mode is very poor.

when the prompt length increases, the performance on these
two metrics has a huge improvement and gradually achieves
the peak when the prompt length is 50. In contrast, ASR
in backdoor mode still keeps over 95% in all lengths of
prompts and the clean images have the same performance
when the prompt length decreases.

D.6. Robustness to STRIP

STRIP [6] is a classical method proposed to detect the back-
door in the given model. It intentionally perturbs the incom-
ing input by superimposing various image patterns. Then it
observes the randomness of predicted classes for perturbed
inputs to determine whether the given deployed model is
malicious or benign. As a result, a low entropy in predicted
classes violates the input dependence property of a benign
model and this phenomenon implies the presence of a mali-
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Figure 2. The effect of increasing the prompt length. SWARM has
a stable performance when the prompt length varies.
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Figure 3. The results of STRIP detection methods on five back-
door attacks. Higher FAR indicates a better attack performance.
Among these attacks, SWARM exceeds all other baseline attacks.

cious image.
Different from the methods proposed in the main paper

whose main metric is AUROC, STRIP exploits FRR and
FAR as the main metrics to evaluate the detection results.
FRR is the false rejection rate which is the probability when



Table 7. The defense results on Fine-tuning. Our method still keeps high ASRs after the mitigation comparing to other baselines.

Attack BadNets Blended WaNet ISSBA SWARM
Dataset,Metric BA ASR BA ASR BA ASR BA ASR BA ASR

CIFAR100 64.41 86.06 63.51 85.04 47.63 42.85 73.00 11.61 76.52 96.97
Caltech101 61.38 35.22 58.62 33.64 66.23 29.84 64.68 34.49 78.19 95.97
EuroSAT 89.16 95.94 90.55 97.02 77.02 28.39 91.50 18.57 90.43 96.05
DMLab 33.79 97.59 34.98 99.55 34.51 80.18 35.44 37.07 32.83 96.30
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Figure 4. The results of three backdoor mitigation methods against five backdoor attacks on four datasets. ASR is the metric shown in the
figure and SWARM has shown over 95% ASR in every situation. Our method is superior to all other baseline attacks.

the benign images are thought of as triggered images by the
STRIP detection system. In contrast, FAR is the false ac-
ceptance rate which is the probability that the triggered im-
age is recognized as a benign image by the STRIP detection
system. The smaller FAR means the better detection effect.

Following the same settings, we use 3000 clean images
and 3000 triggered images to do the test on four different
datasets and we calculate the average scores to better eval-
uate the performance of each baseline.

As is shown in Fig. 3, SWARM has shown the per-
fect ability to avoid STRIP’s detection since all SWARM’s
FARs are over 0.95 on four different datasets. In Fig. 3, we
set FRR to 0.05 to keep the same as the original paper. How-
ever, BadNets, Blended, and WaNet don’t have such a high
performance on average since they have almost 0.5 FAR
under the detection which is much lower than SWARM’s
FARs. On the other hand, WanNet has a high FAR but it has
already been proved that it has poor performance in ASR-D
which is also a not successful attack. We can get the same
conclusion as in the main paper, SWARM has surpassed all
other baseline attacks in resisting the detection method.

D.7. Average ASR under Backdoor Mitigations

D.8. Robustness to Fine-tuning

Fine-tuning is a widely used method to adapt the model
to the downstream tasks’ domains which exploits a small
amount of test samples to tune the model. Moreover, it also
has the effect of mitigating the backdoors in the malicious

models [15]. Therefore, we evaluate the fine-tuning’s effect
on our method and baseline attacks on Vision Transform-
ers. Here, we use the extra 1000 clean test images to do the
tuning and use BA and ASR to evaluate the fine-tuning’s
mitigation effect. The learning rate is 0.001 which is small
enough so as not to destroy the parameters learned by the
training process. Besides, the learning epoch is also set to
10 to avoid the same problem.

As is shown in Tab. 7, we have done the experiments on
four different datasets. SWARM still has the best perfor-
mance to resist the influence of backdoor mitigation. The
SWARM’s ASRs are all kept over 95%. However, other
baseline attacks all have failed cases in different datasets
which shows our method’s robustness. In all, ISSBA has the
poorest performance on resisting the backdoor mitigation
since its main contribution is to resist the detection meth-
ods. In Caltech101 [5], all the baseline attacks have low
ASRs on this dataset. We hypothesize this dataset is the
most difficult task in these four datasets so the backdoors
are easy to be mitigate but SWARM still keeps a high ASR
on this dataset.

As is shown in Fig. 4, we compare five backdoor attacks
on four datasets with three mitigation methods. It’s noteful
that our SWARM surpasses all the baseline attacks in resist-
ing the mitigation methods and has over 95% ASRs in all of
these situations. The average results have the same trend on
different mitigation methods and NAD shows the best miti-
gation performance on decreasing ASRs. However, ISSBA
has the worst performance on resisting the backdoor miti-
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Figure 5. The visualization of datasets in VTAB-1k. As we can see, the triggered images is imperceptible from the clean images by eyes.

gations.

D.9. More Visualizations on Triggered Images

As is shown in Fig. 5, we have exhibited the clean images
and triggered images from 7 datasets. The triggers in these
images are imperceptible.

E. Social Impact
In all, we have proposed a switchable backdoor attack that
is difficult to detect and remove. Such a kind of attack can
exist in the pre-trained models’ adapting process which in-
troduces a small amount of learnable parameters to fit for
the downstream tasks. This kind of attack is practical to
happen in the real world if the cloud service is an adversary
and this kind of attack is more dangerous since it can resist
the state-of-the-art backdoor defenses including detections
and backdoor mitigations.

We have considered the possible huge impact of propos-
ing such a backdoor attack in the pre-training era. This kind
of backdoor attack is easy to implement, resource-efficient,
and hard to detect and mitigate. The adapting process can
exploit this method to provide a malicious service which
may cause huge harm to the whole society.

However, as the era of the pre-training model emerges,
the security and trustworthiness of this paradigm need more
attention. Therefore, we propose such a backdoor attack so
as to hope the community to pay more attention to such a
two-mode attack during the adaption and in the future to
build a reliable enough machine learning system to service
the whole society. We hope the pre-training paradigm can
further improve human life.
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