(a) SMAL Joint Names and Locations

e

b) End Effectors

Lat-A

c) Intersecting Primal Joints

Figure 6. Illustration of joints-related information. In part (a), we present the skeleton of the SMAL model [72], including the names and
indices of the joints. Part (b) displays the locations of the end-effectors in both the SMPL and SMAL models, represented by spheres of
the same color for corresponding joints. In part (c), we depict the process of intersecting the primal skeleton graphs of SMPL and SMAL,
illustrating the resulting intersecting primal skeleton between the two models.

A. Configurations of Joints

In part (a) of Figure 6, we outline the skeletal structure of
the Skinned Multi-Animal Linear (SMAL) model [72]. The
SMAL skeleton is comprised of 35 joints, notably with the
“root” and “pelvis0” joints situated at the same location. A
key distinction between the SMAL model and the Skinned
Multi-Person Linear (SMPL) model [32] lies in the addition
of a tail in SMAL, an element absent in the SMPL model.

We define essential concepts such as “end effectors”, “pri-
mal joints”, and “intersecting primal joints” in Section 3.
These concepts are visually elaborated upon in Figure 6.
For instance, in part (b) of the figure, we illustrate the end-
effector joints for both SMAL and SMPL models, each
marked with distinct color spheres to denote the five end-
effector joints in both models.

Part (c) of Figure 6 showcases the intersection of the
primal skeletons of SMPL and SMAL. This intersection is
subject to potential ambiguity. For example, the left leg
branch in the SMPL graph could correspond to multiple
components in SMAL, such as the left back leg, the tail,
or even the right leg branch. Our approach aligns these
intersections based on their semantic meanings, ensuring
a meaningful and contextually appropriate mapping. The
intersecting primal joints are clearly indicated in the figure,
providing a nuanced understanding of the skeletal overlaps
between the two models.

B. Details of Data Processing

In Figure 7, we illustrate the three-stage data processing
workflow for our AnimalML3D dataset, using a represen-
tative example. The initial stage involves fitting a SMAL
model [72] to the animal’s identity in the first frame, typi-
cally in a resting pose as depicted in the lower section of (a)
in Figure 7. Our approach is developed upon the framework
established by [5], with a notable modification replacing the
losses with Chamfer Distance [3]. We build upon the frame-
work presented by [5], incorporating a significant adaptation:
we employ the Chamfer Distance as our loss function, as de-
scribed by [3], instead of the original loss terms used in [5].
The model optimization targets four parameters: scale (.5),
global translation (1), and the SMAL model parameters 3
and 0, which are refined using the Chamfer Distance [3] be-
tween points sampled from the computed mesh of the SMAL
model and the target mesh, with 3000 points sampled per
iteration. Optimization is executed in two phases using the
Adam optimizer [23] with a learning rate of 0.005: initially,
S and T are optimized over 50 epochs, followed by a com-
prehensive optimization of S, T', 3, and 6 for an additional
400 epochs to obtain the final mesh.

In the second stage, we utilize the software Wrap4D for
mesh registration, aligning the roughly fitted mesh from the
previous stage to the meshes of each frame. The blueprint
code for this process is depicted in part (b) of Figure 7.
Within the software environment, we establish correspond-
ing points between the fitted mesh and the target mesh. For

N~ AL .:". N
XN R
\ “mnn‘n Wgﬁé}%ﬁ#

M
W
Wl

AN

SMALify

(a) Fit SMAL to Target Mesh

(b) Registration with Wrap4D

7,
A (///A!""

s,
> (=

(c) Compute Joints

Figure 7. Data processing pipeline for our AnimalML.3D dataset. Our data processing pipeline is delineated into three stages: (a) fitting
the SMAL model [72] to the target mesh, (b) registering the fitted mesh to a sequence of motions, and (c) computing joint positions from the
registered mesh. In stage (a), we illustrate the target mesh (at the bottom) and the resulting fitted mesh (at the top). For stage (b), inputs to
Wrap4D include the fitted mesh alongside the target mesh sequence (top right), with the output being the registered mesh maintaining SMAL
topology (bottom), where white dots signify the corresponding points utilized for registration. In stage (c), we calculate the joint positions
from the registered mesh; the figure highlights a short tail representation, typical of bear species where the tail is not prominently visible.

every unique identity in the dataset, we generate a distinct
correspondence map, culminating in a total of 36 correspon-
dence mappings required to process the entire dataset.

In the third stage, which is elaborated upon in Section 4
of the main paper, we apply the joint regression matrix to
the vertices of the SMAL model that preserve the topology.
This application yields the positional data for the joints.

C. Loss Details and Convergence

In addition to the losses defined in Sections 3.1 and 3.2, we
introduce another loss function that employs global transla-
tion 7 to regularize generated motion. This loss is applied
to both motions generated from the joint autoencoder and
the text autoencoder, with a weight of 1.0. Empirically,
we observed that incorporating global translation results in
smoother motion generation, significantly reducing the shak-
ing effect.

Figure 8 illustrates the convergences of all the losses. No-
tably, the semantic loss Lo p does not converge close to
0. There are two primary reasons for this. First, achieving
complete alignment between the motion and CLIP features
is challenging. The motion encompasses attributes like ve-
locity and facing direction, which are not fully captured in

the CLIP features. Additionally, the CLIP features encode
semantic nuances, such as differentiating between “run” for
first and second-person pronouns and “runs” for third-person
pronouns. These disparities hinder a full alignment between
motion and CLIP features. Second, our use of cosine similar-
ity as a metric reveals that when similarity falls below 0.75,
the resulting r-precision is approximately 63%, a respectable
rate in motion recall. This outcome underscores the nuanced
relationship between motion and CLIP features, suggesting
that perfect alignment may not be necessary for effective
motion synthesis.

D. More Our Results

In Figure 9, we present additional motions generated by our
OMGPT model. These results further validate our model’s
capability to generate both ID and OOD. For instance, walk-
ing backward is categorized as ID, while stomping with
the left foot is considered OOD. A notable challenge is the
generation of motions involving complex body interactions,
such as stretching one arm with the assistance of the other.
This aspect represents a critical area for future development,
particularly in translating human motion interactions to ani-
mal models. Supplementary material, including a video that

(a) Animal Motion AE

(b) Human Motion Al

(d) Total Loss

Figure 8. Visualization of computation of loss functions and their convergence. Parts (a) and (b) illustrate the loss functions defined in
Section 3.1. Part (c) showcases the specific loss function introduced in Section 3.2. Finally, part (d) depicts the overall convergence of the
total loss, represented as a weighted sum of all individual loss functions.

showcases these motions in a continuous format, is available.
This video, named after the figures in this paper, provides a
comprehensive view of the generated motions.

E. Baseline Implementations

For all baseline comparisons, we trained the models using
our dataset, converting motions into a 36 by 6 dimensional
format (details in Section 3.1). These baseline models, origi-
nally designed for human motion generation, do not typically
account for offsets, which are crucial in animal motion gen-
eration. Therefore, we incorporate offsets into the dynamic
features as an additional input and output target. During
inference, we directly use animal offsets for a fair compar-
ison with our method. We adhere to the default settings
provided in the baseline methodologies for both training and
evaluation, ensuring consistency across all comparisons.

F. More Baseline Results

In Figure 10, we present results from T2M-GPT and Mo-
tionGPT. The analysis reveals that both models struggle with

generating accurate motions: MotionGPT often produces
motionless outputs in response to OOD inputs, whereas
T2M-GPT tends to generate erratic and noisy motions un-
der similar OOD conditions. This discrepancy highlights
the challenge of aligning motion generation with the cor-
responding textual descriptions, especially when handling
OOD instructions.

G. Metric Computation Details

We elaborate on several evaluation metrics, previously uti-
lized in [15]. The metrics involve three types of features:
ground-truth motion features (f,¢), generated motion fea-
tures (fpreq), and text features (fic,). These features are
extracted using the animal encoder, denoted as £, following
the training of the network.

FID (Fréchet Inception Distance). This metric assesses
the overall quality of generated motions. The FID is calcu-

“A dog raises right hand, waves, then lowers hand.”

“Moose is stretching by wrapping one arm around the
other and having the stretching arm out to their side."

“Dog stomps his left feet."

Figure 9. More results of generated motions from our model. Our model demonstrates robust performance in generating both ID and
OOD motions. Except for walking backward, all evaluated motions are OOD, underscoring the model’s effectiveness in handling a variety

of challenging scenarios.

lated using the equation:

1
FID = ”Mgt - :U'PTGdHZ - Tr(Egt + Ep'r'ed - 2(Egt2p7‘ed) 2)
@)
where fi4; and fipreq are mean of fy; and fpreq. X is the
covariance matrix and Tr denotes the trace of a matrix. we
calculate FID based on 1024 randomly generated motions.

MM-Dist. This metric calculates the feature-level distance
between text embeddings and generated motion features.
For N randomly generated samples, MM-Dist is the aver-
age Euclidean distance between each text feature and its
corresponding generated motion feature, defined as:

N
. 1
MM-Dist = N izzlnfpred,i - ftewt,i” (8)

where fpreds and fiepe s are the features of the i-th text-
motion pair. We set N to 1024 in our experiments.

Diversity. Diversity quantifies the variance among all mo-
tion sequences in the dataset. We calculate this by randomly
selecting S4;¢ pairs of motion features (fpreq,; and lenre i)
and then computing:

Sdis
N 1
Diversity = S. g ||fpred,i - f,’n«ed,iH (€))
"8 =1

Syis 18 set to 1024 for OOD and 64 for ID.

MDModality. this metric evaluates the diversity of human
motions generated from the same text description. For each
text description, we generate 100 motions and select two
subsets containing 10 motions each. The features of the j-th

pair for the i-th text description are denoted as (fpred.i ;>

vred.i j)- MModality is then defined as:
] N2
MModality = 0N Z Z”fpred,i,j — fyreaijll (10)
=1 j=1

MotionGPT T2M-GPT

“A bear uplift his right hand and moving it fast again and again.”

*

“A bear standing brings hands together in front of him to applaud.”

Figure 10. Generated motions from T2M-GPT and MotionGPT. Figure illustrates motions generated by T2M-GPT [68] and Mo-
tionGPT [22], corresponding to comparisons in Figure 4. These results demonstrate comparatively lower quality, as evidenced by reduced
metrics in R-Precision and MM-Dist.

	. Configurations of Joints
	. Details of Data Processing
	. Loss Details and Convergence
	. More Our Results
	. Baseline Implementations
	. More Baseline Results
	. Metric Computation Details

