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Supplementary Material

A. Algorithm Details
A.1. Details of Parameters

We introduce the details of α̂t in Eq. (1). Given a data sam-
ple x0, we can define a forward diffusion process by adding
noise. Each forward diffusion process adds Gaussian noise
with variance βt on xt−1, resulting in a new variable xt with
distribution q(xt|xt−1). This process can be formulated as:

q(xt|xt−1) = N (xt;µt =
√

1− βtxt−1,Σt = βtI).

Then we can formulate the diffusion process with

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

where q(x1:T ) means we apply q repeatedly from timestep
1 to T . To simplify this process, we define αt = 1 − βt,
α̂t =

∏t
s=0 αs, and ϵ, ϵ0, ..., ϵt−1 ∼ N (0, I). After repa-

rameterizing with α̂t, we have:

xt =
√
1− βtxt−1 +

√
βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1ϵt−2) +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

=...

=
√
αtαt−1...α1x0 +

√
1− αtαt−1...α1ϵ

=
√

α̂tx0 +
√
1− α̂tϵ.

This reflects the derivation between xt and x0 in Eq. (1).

A.2. Details of Reachability Guidance

As mentioned in Sec. 3, we provide the detailed algorithm
for calculating the reachability guidance in Algorithm 2.

B. Data Processing
B.1. 3D-FUTURE

The original 3D-FUTURE dataset contains object CAD
models that are not watertight, which can not be used for
calculating collision directly. To solve this problem for eval-
uating physical collision between objects, we re-mesh each
object model in Blender to compute the collision rate. Some
examples of re-meshed models are shown in Fig. A.1, where
models on the left are original CAD models in 3D-FUTURE
and those on the right are the re-meshed models. Despite

Algorithm 2: Reachability Guidance

Module: Reachability guidance function φreach(·|F),
search algorithm A∗(·), indicator function 1(·).

Input: Floor plan F , 3D object bboxes {b1, ..., bN}
where N is the number of objects, embodied agent
’s width d.

//Generate gaussian cost map
W = 1(F) //Init walkable area
C = ¬1(F) · MAX VALUE //Init cost map
for i = 1, · · · , N do

b2Di = MAPTO2D(bi)
W = W − 1(DILATE(b2Di ,d/2))
//Add Gaussian cost for each object
C = C + GAUSSIAN(b2Di )

end
//A∗ shortest path search
{c1, ..., cM} = FINDCONNECTEDAREA(W )
{p1, ...,pM} = FINDCENTER({c1, ..., cM})
//Randomly choose pstart and pend

Pathshortest = A∗(C,pstart,pend)
{bagent

j }Lj=1 = GETAGENTBOX(Pathshortest)
// Reachability Guidance
φreach(x|F) = −

∑N
i=1

∑L
j=1 IoU3D(bi, b

agent
j )

return φreach(x|F)

the perceptual similarity between models provided and re-
meshed, most provided samples contain hollows inside that
forbid collision calculation.

B.2. GAPartNet
To simulate the interaction between robots and articulated
objects, we build upon the object CAD models and URDF
files provided in GAPartNet. Specifically, we generate the
articulated object’s states from close to open according to
the URDF file and record the sequential process into an in-
tegrated mesh. As shown in Fig. A.2, we show the origi-
nal object CAD model on the left and the integrated mesh
covering articulated object states on the right. In our exper-
iments, we use the integrated mesh to compute the collision
rate between articulated objects and also use this integrated
mesh to compute the opening size of articulated objects for
guidance calculation.

B.3. Retrieval Categories
As our method still primarily depends on retrieving ob-
ject models for generating the final scene, we combine as-
sets from the 3D-FUTURE and GAPartNet datasets for re-
trieval. In Fig. A.4 we show the utilized categories in the
3D-FUTURE dataset with their corresponding asset num-
bers. We build a mapping between the 3D-FUTURE ob-



Figure A.1. Original 3D-FUTURE model v.s. re-meshed model. We show examples of re-meshed models. Models on the left model
are the original CAD model in 3D-FUTURE, and on the right are the re-meshed models. Despite the perceptual similarity, the re-meshed
models fill in the hollow area for collision calculation.

Figure A.2. Original GAPartNet model v.s. sequential model. The original CAD models are always in closed status. To simulate the
interactive situation, we open the furniture and record the sequential process in an integrated mesh. The left model shows the original
furniture, while the right one is the sequential model. We use the sequential model to compute the collision rate of articulated objects.

Figure A.3. Examples of articulated objects in GAPartNet dataset. We visualize some models of StorageFurniture and Table. The
articulated models have various appearances and different joint types such as revolute and prismatic. Each piece of furniture has several
joints for interaction.

ject assets and GAPartNet to align interactive categories be-
tween two datasets, such as wardrobe in the 3D-FUTURE,
shown in orange, for the category of StorageFurniture in
the GAPartNet. Fig. A.5 shows the category distribution
of GAPartNet models, where StorageFurniture and Table

take the largest proportion of this dataset. For example, the
number of StorageFurniture is 324 out of the whole dataset
number 1045. The articulated models have various appear-
ances and different joint types such as revolute and pris-
matic. Each piece of furniture has several joints for inter-



Figure A.4. Category distribution in 3D-FUTURE dataset.
We show the utilized categories in 3D-FUTURE dataset with as-
set numbers. We choose interactive categories such as wardrobe,
shown in orange, to retrieve GAPartNet model.

action. We visualize some models of StorageFurniture and
Table in GAPartNet in Fig. A.3.

C. Additional Results

C.1. Physical Implausible Scenes in 3D-FRONT

As briefly discussed in Tab. 1, we provide further qualita-
tive visualizations on the violation of physical plausibility
in 3D-FRONT scene data in Fig. A.6. As shown from the
visualizations, some of the scenes used for learning exhibit
significant violations of physical plausibility, including ob-
ject collisions and object-out-of-room scenarios.

Figure A.5. Category distribution in GAPartNet dataset. We
show the category distribution of GAPartNet model, where Stor-
ageFurniture and Table take the largest proportion of this dataset.
These two categories, as shown in orange, are used to composite
interactable scenes with cross-dataset retrieval.

Table A.1. Comparison against the original 3D-FRONT
dataset on collision rate. Both ATISS and DiffuScene have
higher collision rates than the 3D-FRONT dataset, while ours is
lower than 3D-FRONT in most cases.

Data
Bedroom Living Room Dining Room

Colobj Colscene Colobj Colscene Colobj Colscene

3D-FRONT 0.214 0.42 0.206 0.625 0.209 0.57

ATISS 0.248 0.46 0.316 0.85 0.591 0.96
DiffuScene 0.228 0.43 0.198 0.69 0.160 0.55

PhyScene(Ours) 0.187 0.36 0.191 0.63 0.151 0.53

C.2. Guidance on Different Agent Size

The reachability guidance is adaptive to different agent
sizes. We use 0.2, 0.3, and 0.5 as the agent size separately,
where the unit of size is the meter. We show guidance re-
sults with different agent sizes in each row and evaluate
each guided result on different agent sizes ( shown in each
column). Here we show the guidance results in Fig. A.9
with the corresponding walkable map. It shows guidance
that size 0.2 is not suitable for agent size 0.5, where the
agent can only reach half of the room. And guidance on
size 0.5 expands the walkable area to suit the agent in size
of 0.5 and make the whole room reachable.



Figure A.6. Visualization on physically implausible scenes in 3D-FRONT. We show original 3D-FRONT scenes with physical and
interactive failure cases. The red, purple, and blue boxes respectively indicate collisions between objects, objects outside the floor plan
and unreachable areas to the embodied agent. Here we set the floor plan in gray color without texture.
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Figure A.7. Gradient scale varying with the denoising step.

D. Comparison with 3D FRONT

Meanwhile, in Tab. A.1 we show models training on 3D-
FRONT dataset can not get rid of the collision prior ex-
isted in the training dataset. Both ATISS and DiffuScene
have higher collision rates on three types of rooms than
3D-FRONT. However, our PhyScene performs lower scores
than 3D-FRONT. The result shows posterior optimization,

such as physical and interactive guidance, is necessary to
dismiss the unreasonable prior such as collision.

E. Guidance Details
We visualize the gradient scale of each denoising step in
Fig. A.7. The gradient of xt decreases continuously during
the denoising process, while the gradient of x0 (predicted



Figure A.8. Visualization results of PhyScene on 3D Front. The
first two rows and the last two rows are the scene synthesis results
of the Bedroom and Dining Room respectively.

at each step) has a rapid decline at the beginning and inten-
sively changes in the middle stage. We visualize the lay-
out trajectory at each step and find the layout shrinks to the
vicinity of the floor plan at the beginning stage and changes
from chaos to order in the middle stage. The layout fine-
tunes itself with slight changes at the final steps. According
to this observation, we add guidance on the final steps. The
results also confirm that adding guidance on the final steps
performs the best.

When adding guidance to the data, our guidance is calcu-
lated by bounding box, including object size, location, and
angle. The purpose is to make the layout more physically
plausible and interactable. So we only calculate the gradi-
ent of location and angle for guidance to move objects into
a more intractable position. Noting that guiding on size will
lead to rather small sizes (thickness) of objects.

F. Collision with Finer 3D Representations
In the collision guidance, we calculate the guidance ob-
jective on 3D bounding boxes of objects in Eq. (6). We
have also considered other finer representations (e.g., oc-
cupancy field). As the generation pipeline involves a non-
differentiable object retrieval process from the generated
object metadata (i.e., location, scale, etc.), using these finer
3D representations introduces non-trivial difficulty in model
optimization. Nevertheless, we tried to use bounding boxes
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Figure A.9. Reachability guidance results with different agent
sizes. We show the effectiveness of reachability guidance and the
influence of the agent size. We compare walkable maps of differ-
ent agent sizes both in guidance and in evaluation, which are 0.2,
0.3, and 0.5 separately. The unit of size is the meter.

as representations for optimization while occupancy field
collisions as indicators for loss calculation, i.e., using the
following guidance function:

φcoll(x) = −
∑

i,j,i ̸=j

IoU3D(bi, bj)1(OF(oi,oj)),

where 1(OF(oi,oj)) checks if two objects have collided
occupancy fields. This objective penalizes bounding box
collisions only for objects that are collided in their corre-
sponding occupancy fields.

As shown in Fig. A.10, using occupancy fields as indi-
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Figure A.10. Comparison of different 3D representations in collision guidance.

cators can slightly improve the granularity of collision con-
sidered. However, as guidance calculation is required in
multiple diffusion steps, computing the collision for two oc-
cupancy fields significantly increases the computation over-
head (55 times slower). Therefore, we leave this exploration
to find a better balance between speed and granularity using
finer 3D representations as an important future work.

G. Agent Interaction
In the reachability guidance introduced in Sec. 3.3, we
only consider the walkable area as it is hard to unify guid-
ance functions for object interactions, especially with vari-
ous planners/modules required for different purposes (e.g.,
grasping, motion planning). However, as a preliminary at-
tempt, we can extend the current pipeline to incorporate
interaction constraints with proper simplifications. To en-
sure the articulated object interaction, we can use the same
reachability guidance function while now 1) enlarging ob-
ject bounding boxes to the maximum degree (fully opened)
for recalculating the walkable map, 2) planning the shortest
path from a walkable position to the end position of inter-
actable object parts (e.g., drawer handles), and 3) applying
the guidance to move the obstacle objects on this path. Sim-
ilarly, we can model other interactions with rigid objects
(e.g., sit) by planning the shortest path to the interactive ar-
eas (e.g., space in front of the chair) correspondingly in the
guidance function.

With this simplified estimate, we can improve the inter-
activeness rate (measured by whether robots could reach
the end position of object parts when being maximum inter-
acted) from 0.101 to 0.143. Given our flexible synthesize-
with-guidance designs, we believe more fine-grained and
effective constraints could be seamlessly integrated into the
generation pipeline and will continue to explore this topic
in the future.

H. Diffusion v.s. Transformer
ATISS uses an autoregressive model with an end vector to
stop predicting new furniture, while we find the object num-
ber might be very large, such as predicting 33 objects in a
bedroom. In contrast, the diffusion model uses a fixed num-
ber of vectors and generates the objects’ layout together.
The predicted objects are embedded with overall informa-
tion about the entire scene as well as inter-object relation-
ships.

I. Additional Visualization
We provide additional qualitative visualization for the ef-
fectiveness of guidance functions in Fig. A.11. We also
conduct experiments with basic floor plans (i.e., rectangles)
in rooms from ProcTHOR and generate scenes with articu-
lated objects. We provide the visualization of the generated
results in Fig. A.12.
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Figure A.11. Comparison of PhyScene synthesis without and with guidance. The first two columns and the last two columns are the
scene synthesis results without and with guidance respectively.

Figure A.12. Generated scenes with articulated objects. We show scene synthesis results with diverse layouts and random floor textures.
Each scene is embedded with several articulated objects.
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