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A. Supplemental Video
Please see the accompanying video for an overview of

our work and qualitative examples from our model.

B. Overview
The following sections provide additional methodology

and/or results that were not included in the main paper.
Section C provides more details on the metrics, includ-

ing (i) limitations of maximal lip vertex error for evaluating
probabilistic models and (ii) details of the pretrained mod-
els used for evaluation.

Section D provides the complete table of benchmark re-
sults corresponding to Figure 2 of the main paper, a discus-
sion of CodeTalker [11], and additional ablation results for
our model.

Section E discusses efficiency of our method, including
(i) a knowledge distillation strategy for amortizing the sam-
pling strategies, and (ii) diversity vs. efficiency trade-off that
can be achieved by sampling fewer codes from our auto-
regressive model at inference time.

Section F provides implementation and training details
that were deferred from the main text.

Section G discusses the limitations and ethical consider-
ations of this work.

C. Metrics
C.1. Limitation of Maximal Lip Vertex Error

Maximal lip vertex error (ℓvertex) is a metric that mea-
sures the maximum difference in lip vertices between the
ground truth mesh and a mesh generated from the model.
This metric is used as a proxy for lip articulation quality in
existing works, but as a standalone metric, it has limitations
for evaluating probabilistic models. As shown in Supple-
mental Figure 1, a probabilistic model (row 2) can gener-
ate lip articulation that is more similar to the ground truth
(row 1), but due to variations between samples, have larger

Figure 1. Limitations of ℓvertex as a metric. Probabilistic models
(row 2) generate 3D facial motions with diversity, as shown by the
color map of standard deviation. They may achieve worse ℓvertex
compared to deterministic models (row 3), despite being able to
generate a mesh sequence that matches the ground truth sequence
better (row 1). See text for details.

ℓvertex compared to a deterministic model (row 3) that gen-
erates an over-averaged result. Our proposed lip vertex met-
rics, ℓcover and ℓmean, address this limitation and provide a
more complete picture of performance. Overall, there is a
need to look across multiple metrics (sync score, FD score,
lip vertex error) when evaluating speech-driven 3D facial
motion synthesis.

C.2. Audio-Mesh Synchronization Networks

The audio-mesh synchronization networks are trained
using InfoNCE contrastive loss [9] with a batch size of
64, i.e., for each 3D mesh sequence, we sample 63 nega-
tive audio examples that are either semantically misaligned
(taken from a different clip) or temporally misaligned (taken
from a different time point of the same clip). Supplemen-
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Figure 2. SyncNet Evaluation All of our synchronization net-
works can detect individual frames of temporal shift between au-
dio and 3D facial mesh sequences.

tal Figure 2 shows plots of the models evaluated on held-
out ground truth audio-mesh pairs with increasing temporal
misalignment. The results indicate that all the pretrained
networks are sensitive to individual frames of audio-mesh
misalignment.

C.3. Speaking Style Recognition Network

The style recognizer is trained on 3D facial motion (de-
formation between animated and neutral face meshes). The
facial motion encoder uses a similar architecture as our
RVQ encoder with standard 1D convolutional blocks in-
stead of causal 1D convolutional blocks. We use angular
margin loss [4] to maximize the cosine similarity between
embeddings from the same speaker while minimizing co-
sine similarity with other speakers. The performance of the
models for DECA and SPECTRE are shown in the GT line
of Table 2 in the main paper.

D. Additional Results

D.1. Complete Table - Main Figure 2

Supplemental Table 1 shows the full results correspond-
ing to Figure 2 of the main paper. Our approach out-
performs the existing methods across the board. Impor-
tantly, while deterministic methods (i.e., Faceformer+Style)
achieve good lip synchronization and lip vertex error, they
suffer in diversity/realism as highlighted in red.
Sync score Existing deterministic methods (FaceFormer,
Faceformer+Style) achieve better synchronization than ex-
isting probabilistic methods (Meshtalk, MeshTalk-ND,
MeshTalk+Style, MeshTalk-ND+Style). Our probabilistic
method achieves the highest sync scores out of all methods,
particularly when we use our sampling strategies to trade

off diversity for greater speech fidelity (Ours+Avg100).
Frechet distance Deterministic methods (VOCA, Face-
former, Faceformer+Style) suffer on this metric, as high-
lighted in red, suggesting that the generated facial motions
are unrealistic. The probabilistic methods perform better on
this metric, with our method outperforming MeshTalk on
three out of four cases.
Maximal Lip Vertex Error Deterministic methods
(VOCA, Faceformer, Faceformer+Style) achieve lower
ℓvertex, which measures the maximum vertex error be-
tween the ground truth and one synthesized mesh sequence.
However, this does not take into account the diversity
of probabilistic methods. When we compute the maxi-
mal vertex error between the ground truth and the aver-
age of many synthesized sequences (ℓmean), our approach
matches Faceformer+Style and outperforms the others. We
also achieve the lowest coverage error (ℓcover), suggest-
ing that the ground truth sequences are closest to our sam-
pling distribution. Finally, when we use sampling strategies
(Ours+Avg100), we are able to trade off the coverage of our
model (ℓcover) for improved precision (ℓvertex).

D.2. Discussion of CodeTalker

CodeTalker [11] extends Faceformer [5] using a vector-
quantized (VQ) autoencoder to learn a discrete 3D facial
motion prior. While Faceformer uses an auto-regressive
transformer to directly regress 3D mesh deformations,
CodeTalker uses an auto-regressive transformer to regress
the embeddings of the ground truth meshes in the latent
space. Their training loss consists of a combination of re-
gression errors over the embeddings and the original 3D
mesh deformations after decoding, and training occurs in
a teacher-forcing manner. During inference, the predicted
embeddings are projected to the nearest codes in the VQ
codebook before being decoded to produce 3D facial mo-
tion. The motivation is that the projection to the VQ code-
book selects a mode in the distribution of 3D facial motions,
whereas Faceformer regresses to the conditional mean of
motion and produces over-smoothed outputs that do not
correspond to any mode. Importantly, while their auto-
regressive model selects codes from a pretrained codebook,
it is deterministic and selects a code that is nearest to the
regressed latent embedding.

We trained the original implementation of CodeTalker
by the authors on our data, as well as our own re-
implementation using our RVQ codebook and auto-
regressive architecture. While training the VQ codebook
produced good reconstructions of 3D facial motion, we
found that training the auto-regressive model using the com-
bination of regression losses failed to converge to a reason-
able result on our data. This is likely due to the large scale
and diversity of our dataset compared to VocaSet [3] and
BIWI [6], which leads to a high-variance, multi-modal dis-



Model Sync score ↑ Frechet distance ↓ Maximal Lip Vertex Error (×10−3) ↓

DECA Model 1 Model 2 Model 1 Model 2 ↓ ℓvertex ℓcover ℓmean

VOCA 0.137 0.271 22.0 2.94 10.0 10.0 10.0
FaceFormer 0.348 0.361 13.9 2.44 9.9 9.9 9.9
MeshTalk 0.262 0.174 5.2 0.48 11.1 6.9 10.3
MeshTalk-ND 0.286 0.284 1.3 0.40 13.2 8.6 10.5

FaceFormer+Style 0.369 0.441 13.2 1.89 7.9 7.9 7.9
MeshTalk+Style 0.286 0.203 4.7 0.64 8.4 6.3 8.1
MeshTalk-ND+Style 0.298 0.302 1.0 0.34 11.9 7.6 9.5

Ours 0.463 0.464 0.9 0.23 10.8 6.0 7.9
Ours+Avg100 0.684 0.600 7.1 1.18 8.3 7.1 8.2

SPECTRE Model 1 Model 2 Model 1 Model 2 ↓ ℓvertex ℓcover ℓmean

VOCA 0.357 0.290 524.9 66.8 15.5 15.5 15.5
FaceFormer 0.393 0.423 449.5 70.4 15.6 15.6 15.6
MeshTalk 0.309 0.302 227.9 37.3 17.7 12.4 16.1
MeshTalk-ND 0.327 0.436 49.1 7.4 20.3 13.1 16.0

FaceFormer+Style 0.438 0.576 351.0 40.5 12.8 12.8 12.8
MeshTalk+Style 0.331 0.372 178.5 12.7 13.9 10.2 13.2
MeshTalk-ND+Style 0.325 0.474 43.2 6.9 17.9 11.8 14.5

Ours 0.444 0.520 40.9 8.4 18.2 10.0 13.0
Ours+Avg100 0.565 0.591 199.3 30.3 13.9 11.9 13.7

Table 1. Benchmark Results corresponding to Figure 2 in the main paper. Best results in each column are bolded, while second best
results are underlined. ℓvertex, ℓcover , and ℓmean denote the maximal lip vertex error, coverage error, and mean estimate error respectively
and are computed with |S| = 100. See Section 4.2 of the main text for descriptions of the metrics.

tribution in the latent space that is difficult to regress.
While we are unable to converge to a reasonable result

with their original loss, we note that conceptually, taking
the expectation of the code embeddings sampled from our
model at each time point would produce an equivalent result
to performing regression in the latent space. In other words,
the expected output of CodeTalker can be achieved by per-
forming code averaging as in Section 3.3 with an infinite
number of codes. Therefore, we expect the performance of
CodeTalker to be the limiting case of the trend of the green
points in Figure 2(a-b) of the main text.

D.3. Additional Ablations

Choice of Temporal Model We show preliminary results of
our model trained with different temporal models in Sup-
plemental Table 2. We found that using a transformer as
the temporal model in the absence of a reference style clip
improves both the synchronization and realism/diversity of
the outputs, as measured by sync score and Frechet distance
respectively. However, the results were more varied when
we provide additional information through a reference style
clip. Use of a transformer for the temporal model may im-
prove diversity at the cost of synchronization.

Temporal Model Uses Ref. Style? Sync Score ↑ Averaged FD ↓

Transformer block no 0.45 0.51
Ours no 0.43 0.73

Transformer block yes 0.43 0.36
Ours yes 0.44 0.54

Table 2. Choice of Temporal Model Comparison of transformer
vs. masked convolution blocks for the temporal model on the
DECA meshes. See text for details.

Audio Encoder First Code CE ↓ Average Code CE ↓

Wav2Vec 2.0 [1] 2.09 2.54
Ours (trained from scratch) 1.97 2.50

Table 3. Choice of Audio Encoder Comparison of Wav2Vec 2.0
[1] and our audio encoder trained on scratch on the DECA meshes.
CE: cross-entropy loss on held-out set (lower is better). See text
for details.

Choice of Audio Encoder Several recent works, namely
Faceformer [5] and CodeTalker [11] use a self-supervised
and pretrained wav2vec 2.0 speech model [1] as the audio
encoder. While this may prevent overfitting of the audio en-
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Figure 3. Perceptual study: Users rated the synchronization be-
tween the motion in the videos and the audio (yes/no). See text for
details.

coder on small datasets as VocaSet [3] and BIWI [6], we
found that using a pretrained audio encoder was not neces-
sary for a large-scale dataset like VoxCeleb2 [2]. As shown
in Supplemental Table 3, in our preliminary experiences,
we found that using the pretrained speech model did not
improve results.

D.4. Additional Perceptual Study

Supplemental Figure 3 shows the results of a user study
that rates the synchronization of facial motion and audio.
Ten participants were shown a total of ∼50 video clips.
They were specifically asked whether the video was syn-
chronized with the audio and labeled each file with Yes or
No. In addition to our model’s outputs, we also included
negative controls (mismatched or time-shifted videos), pos-
itive controls (ground truth videos), and Faceformer as a
baseline [5]. Almost all synthesized videos were rated as
synchronized, comparable to the ground truth and outper-
forming Faceformer, while the negative controls received
much lower scores.

E. Improving Efficiency
While the focus of the methodology and results in the

main paper was primarily on the quality and diversity of
the model, for certain applications (e.g., real-time speech-
driven 3D avatars), the efficiency of the method is also
important. In this section, we elaborate on improving the
speed/efficiency of our method.

E.1. Knowledge Distillation

In Section 3.3 of the main text, we described sampling
strategies for trading off the diversity of the auto-regressive
model for improved precision and fidelity. However, this
strategy increases the inference speed, as multiple codes
need to be sampled and aggregated. We propose a knowl-
edge distillation strategy for amortizing this added sampling
time. Recall that j denotes a matrix of codebook indices in-

Figure 4. Improving Model Efficiency Results are shown for the
SPECTRE meshes. See text for details.

dexed by time t and depth d corresponding to the real facial
motion x. We obtain the new targets ĵ for the student by:
1. Computing the audio-visual context using the temporal

model hav[t] in a teacher-forcing manner, i.e., inputting
the ground truth j into Equation (2) in the main text.

2. Sampling codes from the depth model using Equation
(3) without teacher-forcing. Namely, we use hav[t] from
Step 1 to compute vt2, but use the sampled codes in place
of the ground truth codes for computing vtd, d ≥ 3.

3. Aggregating the sampled codes using strategies dis-
cussed in Section 3.3 of the main text and reprojecting
them to the RVQ codebook to obtain new indices ĵ.

The student model is trained in a teacher-forcing manner
using both the ground truth codes j as well as the new tar-
gets ĵ. Specifically, we use j as input to the temporal model,
and we use ĵ as input to the depth model. We also use ĵ
as the targets for optimizing the student model. As shown
in Supplemental Figure 4, this enables us to distill the sam-
pled and aggregated labels from a teacher model (blue) to a
student model (yellow, ‘16’) with improved inference time.

E.2. Quality vs. Efficiency Trade-off

One of the advantages of the coarse-to-fine design of the
RVQ codebook is the possibility of improving efficiency by
predicting and decoding codes. We show that this can be
done while still achieving high synchronization for as few
as 3 codes (out of depth of 16). As shown by the yellow
points in Supplemental Figure 4, reducing the number of
codes yields a quality vs. efficiency trade-off, where we
can achieve improved speed/efficiency at the cost of losing
finer 3D motions. The frame rate of synthesis for a given
number of codes is shown in Supplemental Figure 5.
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Figure 5. Frame rate of synthesis for given number of codes.
Results are shown for the SPECTRE meshes. See text for details.

F. Implementation Details

RVQ Autoencoder The 3D facial motion encoder and de-
coder consist of 1D convolutional blocks. The inputs and
outputs are 3D facial motion represented by mesh vertex
deformations, i.e., the difference between the mesh vertex
positions for animated and neutral expressions. The en-
coder consists of a 1D convolutional layer with kernel size
of 1 to aggregate information over mesh vertex deforma-
tions, then two 1D causal convolutional layers with kernel
size of 3 to aggregate information over time. The decoder
consists of the same blocks in the reverse order. For in-
put size x ∈ RT×3V , the size of the latent embeddings is
Z ∈ RT×NC , where NC is the dimensionality of the codes
in codebook C. In practice, we use a shared codebook [8]
with D = 16, |C| = 256 and NC = 128.
Audio encoder Following [10], our audio encoder con-
sists of 1D convolutional blocks operating over mel-
spectrograms of 1s audio samples centered at each visual
frame.
Reference Clip Encoder The reference clip is encoded us-
ing the same architecture as the RVQ encoder, except stan-
dard convolutional layers are used in place of the causal
convolutions.
Two-Stage Auto-Regressive Model The temporal auto-
regressive model consists of four masked causal convolu-
tional layers [10] with kernel size of 2 and increasing di-
lation of 1, 2, 4, 8 for gathering audio-visual context. The
depth auto-regressive model consists of a masked trans-
former self-attention block with embedding size of 64.
Sampling Strategies For KNN-based sampling, we use
N = 100 and K = 3. For SyncNet-based sampling, we
take the top 1/2 codes based on the synchronization score.
For code averaging, we vary the number of codes averaged
depending on the desired diversity vs. fidelity trade-off.

Training We train the RVQ autoencoder and two-stage
auto-regressive model for approximately 150 and 200
epochs respectively with Adam optimizer [7] with learn-
ing rate of 10−4. For knowledge distillation, we train the
student for approximately 100 epochs. The two-stage auto-
regressive model is trained in a teacher-forcing manner. We
use both stochastic sampling and soft code targets [8].

G. Additional Discussion

Ethical Considerations. The datasets and models used in
this work are intended for research purposes only. While
meshes from this work can be used to render photo-realistic
content, they should not be used to generate videos of indi-
viduals without their consent.
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