RILA: Reflective and Imaginative Language Agent for Zero-Shot Semantic
Audio-Visual Navigation

Supplementary Material

A. Implementation Details

In our experiments, we utilize the Matterport3D (MP3D) [8]
environments within the SoundSpaces [10]. For the
Imagebind-LLM [20] baseline, we involve directly provid-
ing the type of the goal object to construct the correspond-
ing prompt. In contrast, for the ESC [56] baseline, we for-
mulate the task instructions incorporating ground truth au-
dio information. The performance results for other base-
lines are retrieved from their respective official papers. Un-
less otherwise specified, all experiments are conducted in a
zero-shot manner on the test dataset.

B. Method

In this section, we provide detailed components of RILA.

B.1. Audio Perception

Audio Classification In this section, we provide the de-
tails of our audio classification model. We process origi-
nal sounds from the Soundspace training set by segmenting
them into one-second segments. These segments then un-
dergo data augmentation through techniques such as time
warping, time masking, and frequency masking. Addition-
ally, each audio segment was enhanced using linear pitch
modification and the Short Time Fourier Transform (STFT),
collectively expanding our dataset to 30,000 samples. These
enhanced segments were subsequently used for training a
pre-trained Resnet18 model, obtained from torchvision.

Audio Localization Initially, we employ the Generalized
Cross-Correlation with Phase Transform (GCC-PHAT) [7]
method to directly ascertain the direction of audio sources.
However, we encountered a limitation with GCC-PHAT,
particularly in its performance on near-field models. This
limitation manifests as an error margin of up to % in our
dual-channel audio setup, necessitating the adoption of spe-
cific strategies to determine the audio direction. Therefore,
as discussed in Section 4, weighted predictions by RMS
values are employed to ascertain the audio direction. It
has been observed that occurrences of significant dispari-
ties in RMS values between audio channels are relatively
infrequent. Consequently, the associated weights are often
proportionately smaller. To more accurately represent the
differences between dual-channel RMS values, we have ad-
justed the scaling of the weight by a factor of 0.4. This nor-
malization enables us to derive more distinctive directional

assessment weights, which are integral to the construction
of the AudioMap.

In the process of predicting distances, we adopt a similar
approach by randomly sampling 30,000 audio clips to train
a Resnet18 model, which is aimed at capturing the scale of
distances. Once a rough distance prediction is obtained, we
apply a weighted approach to refine it, which involves ex-
panding the predicted distance by a margin of 15%. Specifi-
cally, any distance falling below 85% or exceeding 115% of
the predicted value is assigned a weight of 0. For distances
that lie within this 15% boundary, we employ a linear decay
weighting scheme, assigning the highest weight of 1 to the
predicted distance itself. By effectively integrating predic-
tions of both audio direction and distance, our perception
modules accomplish a preliminary localization.

AudioMap Construction In our method, the AudioMap
is constructed by integrating weighted predictions of both
audio direction and distance. The audio direction pre-
dictions facilitate the partitioning of the map into distinct
regions. Meanwhile, the distance predictions contribute
to predicting regions with a circular, ring-shaped config-
uration. This integrative approach culminates in forming
a confidence-based AudioMap, offering a comprehensive
representation of audio spatial characteristics.

To enhance the interpretability of the AudioMap, we
have visualized it as a grayscale image, which is dimension-
ally equivalent to the corresponding semantic map. In this
visualization, each pixel’s level of confidence is normalized
to facilitate easier interpretation. The highest confidence re-
gions are presented by white pixels, as shown in Figure 6.

Figure 6. An example of our AudioMap. In the left figure, we
display the direct AudioMap, where white pixels signify areas of
high confidence. On the right, the figure showcases a composite
image that merges the AudioMap with the semantic map, illustrat-
ing how they integrate and complement each other.



- Perception Module - Imaginative Assistant

/* Task Description */

Imagine you are an agent and trying o perform a navigation task using a frontier-based
exploration policy. Now you need to decide which frontier to explore first.

Here are some information will be given to you: the description of the goal object and
your current position in pixel. At each step, you will get a list of observed frontiers with
the position and the surrounding objects. The frontier candidate is formulated as: "Index.
<X, y> in the {region} : {surrounding objects}".

If the given information is not possible to determine which frontier o explore first,
please consider the unexplored places (if exist) or just choose the most possible one.

/* Information */

Your position is <720, 720>.Task: Navigate to the object sounds like a counter. Sound
comes from the upper-left side of the agent. /* Perception: Acoustic */

Frontier Candidates:

1. <581, 734> in the dining room: { table, chair }

2. <720, 731> in the hallway : { plant, sink, table, chair }/* From Assistant: Region
Imagination */ /* Perception: Visual */

r* FLLM Answer */

Imaginative Assistant
/* Task Description */

Given a set of room types and a specific region we are interested in, with some objects in this
region, infer which kind of rooms are in this region and give their location. The provided rooms and
generated layout should follow the €SS style, where each line starts with the object or room
description and is followed by its absolute position.

/* Information*/

Rooms:

1, hallway {{ height: 101px; width: 45px; top: 582px; left: 757px; }} /* From Historical Region
Imagination */ /* Perception: Visual */

In+éresfad Region: {{height: 101px: width: ?px: top: 582px: left: ?px; }}
Objects in Interested Region:
1. sink {{ height: 15px; width: 20px; top: 757px: left: 658px: }} /* Perception: Visual */

/* Instruction*/

Now infer what kind of room my interested region is and what its precise location is. Remember,
you need fo use the information of surrounding rooms and objects, and the bounding box you give
should be **included in** my Interested Region and smaller than it:

/* LLM Answer */

Based on the objects in the interested region, it is likely that the room is a kitchen and located at

{{height: 101px; width: 167px; top: 582px; left: 590px: }}.

Figure 7. An example of the navigational prompts used by RILA. On the left side, we display the specific instructions provided to
RefPlanner for selecting exploration frontiers. On the right side, the instructions given to ImaAssistant are shown, which guide it in

inferring the environmental layout.

B.2. Visual Perception

GroundingDINO prompting We employ a two-stage
strategy to differentiate between recognizing the goal and
other objects, involving distinct recognition processes for
general objects and goal prediction. General object recog-
nition necessitates higher accuracy for imagining the region
but has lower recall requirements. Hence, we formulate
the prompt by presenting these objects, resulting in a cer-
tain level of missed recognition but with a lower error rate.
On the other hand, goal prediction recognition demands a
stronger emphasis on representation and higher recall. A
prompt template is shown below. This two-stage strategy
guarantees a significantly lower missed recognition rate.

/* Object Recognition */
There is a Counter (Goal Prediction) in:

Semantic Map Construction By utilizing the pixel data
from the depth image and the camera’s intrinsic parameters,
we compute the spatial coordinates for each pixel. These
coordinates are then amalgamated to create a point cloud,
where each point is represented by three coordinates. In this
structure, the z-coordinate, which denotes height, varies be-
tween 0 and 1. We apply a filtering process to this point
cloud based on the height parameter. Points with a height
exceeding 0.5 are identified as parts of obstacle regions, in-
ferred from their horizontal coordinates. Conversely, points
with a height less than or equal to 0.5 are classified as free
regions. Areas falling outside the camera’s field of view are
designated as unknown regions. Subsequently, we project
the map, initially scaled in meters, into a pixel-based image
using a conversion ratio of 1:20, which means every 20 pix-
els in the image corresponds to 1 meter in the actual space,
enabling us to construct a detailed semantic map.

Deterministic Navigation Policy In RILA, navigation to-
ward a designated waypoint is governed by a deterministic
policy. Given that the unit of forward movement is set at
one meter, we have partitioned the semantic map into a dis-
crete graph of dimensions 81 x 81, with each node encom-
passing an area of 20 x 20 pixels. A node is classified as
visible within the graph if it contains more than % of its pix-
els as either occupied or free. The connectivity between two
nodes, represented by an edge, hinges on the absence of ob-
stacles between the centers of these nodes. Subsequently,
the shortest path is computed based on the accessibility of
selected frontiers or the nearest reachable points, facilitat-
ing efficient navigation.

Region Layout Split For the region layout prediction in
the Imaginative Assistant, we specifically segment the se-
mantic map based on the locations of detected walls. This
process adheres to more stringent criteria compared to the
construction of occupied regions. Within the point cloud,
we identify walls by locating consecutive segments that
share the same horizontal position. This approach strikes a
balance, effectively pinpointing walls while preserving the
depth map’s accuracy and avoiding excessive segmentation,
which ensures that our Imaginative Assistant accurately de-
lineates different areas, crucial for its functioning. Upon
identifying walls within the point cloud, we proceed by ex-
tending and extracting continuous pixel segments until they
intersect with other segments. These intersections are then
established as definitive boundaries for various regions on
the semantic map. Concurrently, we conduct an iteration
over all detected objects, partitioning them into their respec-
tive regions based on the boundaries. This process effec-
tively creates a semantic segmentation of the environment,
laying down a structured framework for ImaAssistant. This
segmented framework is instrumental for ImaAssistant in



understanding and predicting the spatial layout.

B.3. Imaginative Assistant

Following the delineation of a logical region layout with
its associated objects, as identified by the walls, ImaAssis-
tant proceeds to interpret the semantic details of these ob-
served regions. This interpretation is guided by both the lay-
out and semantic cues, which include information from the
prompts containing bounding boxes and semantic CSS for-
mats. In situations where the regions are only partially ob-
served and lack complete enclosure, ImaAssistant engages
its imaginative capabilities to infer and supplement these re-
gions with reasonable bounding boxes. The synthesized in-
formation, encompassing both observed and imaginatively
supplemented details, is subsequently relayed to RefPlan-
ner. This integration into RefPlanner facilitates comprehen-
sive exploration and strategy formulation for subsequent ex-
ploratory tasks, ensuring that RefPlanner has a holistic un-
derstanding of the environment for effective planning.

B.4. Reflective Planner

Frontier-based Exploration In our RILA framework, we
employ a frontier-based strategy, central to which is Ref-
Planner in selecting the optimal frontier. This process com-
prises two main components: region suggestion and frontier
planning. Region suggestion entails evaluating the poten-
tial of different regions for exploration in the next phase,
based on the layout interpretations provided by ImaAssis-
tant. Building on these suggestions, we compile a com-
prehensive list that includes all frontiers along with their
associated regional semantics. Additionally, this list also
integrates any supplemental objects located in the vicinity
of these frontiers. Armed with this aggregated information,
RefPlanner then proceeds to analyze and choose the most
appropriate frontier for the upcoming exploration stage. To
provide a clearer understanding of our approach, we illus-
trate a specific navigation instance of our agent in Figure 7,
which showcases the detailed prompt template we employ.

C. Supplementary Experimental Result
C.1. Audio Perception

Audio Classification To analyze the audio samples, we
apply STFT with specific parameters: a hop length of 160
samples and a window size of 512 samples. These parame-
ters correspond to a time resolution of 0.032 seconds, con-
sidering a sample rate of 16,000 Hz. When processing one-
second audio segments, this approach generates complex-
valued matrices with a size of 257 x 101. Following the
generation, we calculate their magnitudes and downsam-
ple these magnitudes, reducing the size of both dimensions
to optimize the data for subsequent processing. Moreover,
we sample 3344 one-second audio clips across 500 test

episodes and compute the classification accuracy for 21 dis-
tinct goal objects respectively as shown in Table 5.

Object ‘ Acc?T Count
bathtub 100.0 16
chair 99.7 652
counter 94.6 112
seating 100.0 12
sofa 100.0 124
toilet 85.7 28
bed 100.0 128
chest of drawers 92.0 88
cushion 85.9 376
picture 85.2 548
shower 91.7 12
stool 100.0 12
towel 98.8 84
cabinet 91.4 336
clothes 95.8 24
fireplace 75.0 4
plant 90.4 312
sink 100.0 104
table 99.3 300
tv monitor 76.4 72

Table 5. The accuracy results of audio classification for each spe-
cific object type within the test dataset. Count refers to the number
of times each object appears within the test set.

Audio Localization We evaluate the difference in RMS
values across 30,000 audio samples randomly selected from
500 episodes within the Soundspace test dataset. As men-
tioned in Section 4, when we deactivated the lowest level
of weight, indicative of weak directional information, the
accuracy in assessing left-right direction surpassed 73.7%.

C.2. Visual Perception

Object Recognition We evaluate object recognition with
two metrics: recall and accuracy. Recall measures the pro-
portion of ground truth objects that are successfully identi-
fied, while accuracy indicates the fraction of correctly iden-
tified objects among all recognized items. Furthermore, we
make a distinction between goal objects and other objects
to specifically assess the effectiveness of our prompt de-
sign. The evaluation results are detailed in Table 6. Notably,
GroundingDINO demonstrates impressive results, achiev-
ing over 90% recall and over 80% accuracy in recognizing
the predicted goal object. Additionally, our navigation pro-
cess allows for the repeated observation of a single object
at various stages, thereby ensuring reliable overall perfor-
mance in object recognition.
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Figure 8. Two representative cases. The left figure illustrates a successful navigation process, whereas the right figure depicts a scenario
where RILA navigates to an incorrect region, albeit with logically arranged layouts.

Object Type Accuracy T Recall 1
Other Objects 85.0 62.2
Goal Prediction 83.9 91.6

Table 6. The accuracy and recall results of GoundingDINO in ob-
ject recognition on the test dataset. Goal Prediction refers to the
detection of the predicted goal object, while Other Objects encom-
passes the detection of all observed objects.

C.3. RefPlanner

In this section, we present supplementary experimental re-
sults of the ablation study. Table 7 illustrates the com-
parative analysis of various planning strategies on the test
dataset, specifically utilizing the perception modules inte-
grated within our framework. In contrast, Table 2 employs
ground truth perceptions for its analysis. Table 7 indicates
that RefPlanner effectively navigates to the target, which is
in line with the results shown in Table 2.

Similarly, we evaluate RILA with ground truth per-
ceptions, as presented in Table 8. Consistent with Ta-
ble 4, RILA demonstrates exceptional planning perfor-
mance when integrating with ground truth perceptions. This
consistency underscores the current most significant limita-
tion of RILA, its reliance on audio perception capabilities.

Method SR (%)t SPL (%)1 SWS (%)1
Random? 22.1 13.0 18.3
Nearest! 19.1 13.5 16.4
Llama-2 7B 24.8 11.9 22.3
Ours 354 11.8 114

Table 7. Ablation study on RefPlanner on the test dataset by re-
placing it with heuristic frontier selection methods and replacing
the ChatGPT with Llama-2. T indicates using oracle stop.

Method SRT SPL{T DTG
Ours 354 118 11.4
+ GT Audio Perception 51.0 234 7.3
+ GT Visual Perception 60.4  35.8 5.7

Table 8. Comparison of incorporating different ground-truth per-
ceptions on the test dataset. Experiments in each row include the
ground-truth information from all previous rows.

C.4. Other Results

Noisy Environments To simulate noisy environments,
we adopt the distractor setting in the SAVN task. For low-
light condition, we adjust the RGB inputs by reducing the
brightness by half. These simulations affect primarily the
Perception Module. Therefore, we provide a comparison in



Table 9, which indicates that these modules maintain com-
petitive performance. Moreover, our agent naturally oper-
ates with potentially inaccurate perception, ensuring con-
sistent performance in noisy settings.

(visual) Default Low-light
Object Recognition 83.9% 79.1%
(auditory) Default Noisy
Audio Classification  93.0% 82.9%
Audio Distance 83.8% 80.9%
Audio Direction 73.7% 75.2%

Table 9. Comparison of accuracy results of perception modules
under regular and low-light environments.

More Scenes We further evaluate our methods in 10 un-
seen scenes from the val split. According to Table 10, our
agent retains competitive performance. It is noteworthy that
our agent operates in a zero-shot manner, which enables it
to seamlessly generalize to varied unseen scenarios.

Scenarios SR (%) 1 SPL (%)1T SWS (%)
Test (Default) 354 11.8 20.4
Val (10 unseen) 36.2 12.1 30.8

Table 10. Results on 10 unseen scenes from the val split.

C.5. Case Study

In this section, we provide two examples of RILA’s nav-
igation process, as depicted in Figure 8. The left figure
demonstrates RILA’s capability to accurately identify the
correct region over long distances, utilizing visual cues and
benefiting from spatial cognition. On the other hand, the
right figure presents a typical instance of navigation failure.
In this case, despite accurately inferring the layout, RILA
erroneously navigates to the dining room in search of the ta-
ble, based on semantic relationships, rather than heading to
the bedroom, the intended target region. Overall, these ex-
amples indicate that, while generally effective, RILA’s nav-
igation can be subject to specific errors in decision-making.
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