
Supplementary Materials

A More Implementation Details

A.1 Co-occurring Frequency among Categories

In this work, we propose SeCo to tackle the widespread co-occurrence issue in WSSS. Here, we calculate the
co-occurring frequency among 20 categories in PASCAL VOC. As shown in Figure S1, each entry means
the co-occurrence frequency between the query category(y-axis) and the key category(x-axis). The diagonal
entries mean the single-category items. Almost all categories are obviously coupled with other categories. The
{person} category has the highest co-occurring frequency with all categories. Other representative co-occurring
pairs, such as {chair, sofa}, {bottle, dinning table} and {bus, car}, etc., also hold high co-occurring frequency.
Therefore, apart from the incompleteness issue of CAM, the co-occurrence issue is another bottleneck of
WSSS performance as well. SeCo acts in a ’separate and conquer’ manner to decouple co-categories and gains
the improvement.

A.2 Training Configurations

For image decomposition, we subdivide integral images into patches with size 64× 64. In practice, we auto-
matically select 12 patches mainly around the foregrounds and group them into three types (i.e., background,
category and uncertain) according to the generating threshold of category tags φ. The φ is set as 0.2 in our
experiments. The capacity of the semantic patch reservoir is 4608. The rectification threshold value σ in the
proposed tag rectification strategy is set as 0.1. Encoders in the dual-teacher single-student framework all
adopt ViT-B [3] as the backbone and are initialized with pre-trained weights on ImageNet [8]. Our decoder
adopts a simple segmentation head with four 3× 3 convolutional layers.

The temperature factors for the contrastive loss LLiG and LLiL, i.e., τg and τl, are set as 0.1 and 0.08,
respectively. The loss weight factors (α, β, γ) are set as (0.5, 0.5, 0.12). All the hyper-parameters above
follow grid searching strategy. The learning rate in our experiments is set as 1e− 6. Following the training
strategy in [9, 10], we use AdamW optimizer to train SeCo with a polynomial scheduler. The total training
iteration for experiments on PASCAL VOC and MS COCO is set as 20k and 80k, respectively. For robustness,
we update the category knowledge after 600 and 6000 iterations on PASCAL VOC and MS COCO, respectively.
All experiments are conducted on RTX 3090 GPU.

A.3 Settings for the Auxiliary Pseudo Mask

As we mentioned, we incorporate an auxiliary classification head to generate a category tag ti from the auxiliary
pseudo mask and assign it to each local patch xi. It guides the class-specific contrast to decouple co-contexts.
The reason for such operation is that features from the last blocks of ViT intend to be over-smoothed [4, 11]
and the auxiliary pseudo masks directly from the last block may be unreliable. In order to generate CAMs
with diverse semantics at the beginning of our training, we generate the auxiliary pseudo masks from the
intermediate block based on the observation that features from the intermediate blocks preserve more semantic
diversity. We carry out detailed experiments to choose the best intermediate features, as reported in Table S1
(j). It turns out features from 10-th blocks of ViT-B (12 Transformer blocks in total) are competent to avoid
the potential downside of ViT and generate more accurate category tags.
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B More Experiment Results

B.1 Sensitivity of Hyper-parameter

Patch Representation. Here, the sensitivity analysis of four hyper-parameters for patch representation (i.e.,
the crop size of the local patches, the number of the local patches, the capacity of the reservoir, and the
momentum to update the local teacher) are performed on VOC val setas reported in Table S1 (a-d). The patch
size and the patch number are two key parameters as they directly affect the spatial separation of co-contexts
in the image decomposition. SeCo keeps satisfying performance when the parameters change. Moreover,
SeCo remains consistent with variations in reservoir size and momentum, which shows the robustness of our
method. In our method, the default values of patch numbers, patch size, reservoir capacity and momentum are
12, 64× 64, 4608, 0.999, respectively.

Temperature Factor. Temperature factor directly affects the sharpness of the learned contrastive representation.
In Table S1 (e), we report the impact of global temperature factor τg in LLiG on the semantic performance
of PASCAL VOC val set. In Table S1 (f), we report the impact of local temperature factor τl in LLiL on the
semantic performance. It shows that SeCo remains consistent with variations of the temperature factors. In our
experiments, τg = 0.1, τl = 0.08 can achieve the most satisfying performance.

Loss Weights. Table S1 (g) reports the impact of loss weights in LSeCo on the semantic prediction performance.
α and β are the weights for LLiG and LLiL, respectively. It can be observed that α = 0.5 and β = 0.5
achieves the best prediction performance on VOC val set, and SeCo can also yield satisfying results with other
values.

Tag Generating Threshold. In our experiments, tag generating threshold φ is leveraged to determine the
type of each category tag according to the corresponding pseudo mask patch. Table S1 (h) shows that SeCo
produces the best results when φ is set as 0.2.

Tag Rectification Threshold. We design a tag rectification threshold σ to determine if the raw category tag is
correct. Once the ratio of positive votes (i.e., the tag is not correct) to negative votes exceeds a threshold, we
consider the tag noisy. As reported in Table S1 (i), SeCo produces the best results when σ = 10.

Index of Intermediate Blocks. We explore the impact of different intermediate blocks to generate auxiliary
pseudo masks and report the influence on the performance of decoupling co-occurrence. As shown in Table S1
(j), the features from intermediate blocks help SeCo generate more diverse CAMs and allocate reliable category
tags. The performance heavily drops when directly adopting the pseudo mask from the final block. It is
observed that SeCo achieves the best performance with λ = 10.

B.2 Convergence Speed

In Figure S3, we visualize the convergence of three methods (i.e., SeCo and the other two single-staged
methods [9, 10]) in terms of mIoU as the number of iterations increases. It can be seen that our SeCo has a
faster convergent speed and achieves more favorable performance.

B.3 Quantitative Category-wise Performance

Confusion Ratio Comparisons. In Table S2, we specifically report the confusion ratio for each category of
SeCo and other single-staged competitors [9, 10]. It demonstrates that our method consistently holds lower
confusion ratio on 14 categories. With the same backbone as ToCo [10], our method shows significantly
lower confusion ratio at those objects with high co-occurring frequency, such as {boat (−79%)},{train
(−21%)},{aeroplane (−12%)}, etc., which shows the superiority of SeCo suppressing false activation.

Comparisons with Existing Methods Tackling Co-occurrence. As reported in Table S3, we evaluate
per-category performance with our method SeCo and other impressive methods tackling co-occurrence with
external supervision, such as CDA [12], EPS [7], W-OoD [6]. For those most representative objects with
high co-occurring frequency as shown in Figure S1, such as {chair}, {dining table}, {person}, {bottle},
SeCo consistently outperforms other competitors without any additional data or elaborate designs, which
demonstrates the efficiency of SeCo tackling co-occurrence issue. On the other hand, SeCo is trained in a
single-staged paradigm. SeCo not only has more efficient training process, but also remains superior over
other single-staged and multi-staged methods on 11 categories.
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B.4 More Qualitative Results

More qualitative semantic segmentation results of co-occurrence cases from PASCAL VOC and MS COCO
are presented in Figure S3 and Figure S4, respectively. SeCo holds superior performance on both datasets
compared to the recent competitors [9, 10]. Both results show that SeCo accurately localise the co-occurrence
objects by suppressing the false positives from backgrounds and foregrounds.

More visualization results of CAM on PASCAL VOC are shown in Figure S5. Our methods can precisely
differentiate the co-occurring foregrounds and filter out the distracting backgrounds, which demonstrates the
efficacy of SeCo tackling co-occurrence issue.
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Table S1: Impact of hyper-parameters on VOC val set. M: pseudo mask. Seg.: semantic prediction. Temp.:
temperature. T.H.: threshold value.

(a) The patch size.

Patch Size M Seg.

32× 32 72.8 72.4
64×64 75.2 74.0
96× 96 73.8 72.6
112× 112 72.6 71.9

(b) The patch number.

Patch Number M Seg.

16 73.4 72.8
12 75.2 74.0
10 73.6 72.9
8 72.1 71.3

(c) The reservoir capacity.

Reservoir Size M Seg.

2304 73.4 71.8
4608 75.2 74.0
6912 74.2 73.1
9216 74.5 73.3

(d) Momentum in EMA.

Momentum M Seg.

0.1 73.7 72.1
0.999 75.2 74.0
0.99 74.0 72.8
0.9 73.5 72.2

(e) Global Temperature Factor.

Global Temp. τg M Seg.

0.1 75.2 74.0
0.2 73.7 72.2
0.5 71.6 69.8
0.8 70.1 68.9

(f) Local Temperature Factor.

Local Temp. τl M Seg.

0.08 75.2 74.0
0.1 74.2 71.5
0.2 73.6 71.7
0.5 72.5 70.7

(g) Loss Weights.

Loss Weights α β

0.1 71.2 73.4
0.3 70.7 72.7
0.5 74.0 74.0
0.8 72.7 71.9

(h) Generating Threshold of Tags.

Generating T.H. φ M Seg.

0.01 75.0 73.4
0.1 74.8 73.5
0.2 75.2 74.0
0.5 72.9 70.2

(i) Rectifying Threshold of Tags.

Rectifying T.H. σ M Seg.

1 71.7 70.1
5 73.1 72.2
10 75.2 74.0
20 74.6 72.6

(j) Block Index.

Block Index λ M Seg.

12th 36.4 35.9
11th 66.5 65.1
10th 75.2 74.0
9th 71.5 70.2

Table S2: Per-category confusion ratio comparison with recent methods [9, 10] on VOC val set.
Methods bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mCR

AFA [9]CVPR’22 0.05 0.12 2.16 0.14 0.42 0.20 0.10 0.06 0.20 1.09 0.07 0.16 0.12 0.13 0.27 0.34 0.39 0.09 0.57 0.63 0.49 0.36
ToCo [10]CVPR’23 0.04 0.19 0.84 0.42 1.11 0.13 0.11 0.11 0.02 0.65 0.03 0.32 0.08 0.09 0.21 0.06 0.59 0.06 0.77 0.75 0.34 0.32
SeCo(Ours) 0.04 0.07 1.22 0.10 0.32 0.17 0.09 0.07 0.02 0.48 0.02 0.28 0.09 0.05 0.17 0.06 0.29 0.04 0.35 0.54 0.45 0.23

Table S3: Per-category performance comparison with recent methods that focus on tackling co-occurrence on
VOC val set. IoU is the metric to validate the efficiency of tackling co-occurrence issue.

Methods bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIou

Multi-staged methods
CDA [12]CVPR’21 89.1 69.7 34.5 86.4 41.3 69.2 81.3 79.5 82.1 31.1 8.3 50.8 80.6 76.1 72.2 77.6 48.8 81.2 42.5 60.6 54.3 66.1
AdvCAM [5]CVPR’21 89.5 76.9 33.5 80.3 63.7 68.6 89.7 77.9 87.6 31.6 77.2 36.2 82.6 78.7 73.5 69.8 51.9 81.9 43.8 70.9 52.6 67.5
EPS [7]CVPR’21 91.7 89.4 40.6 84.7 67.0 71.6 87.8 82.7 87.4 33.6 81.9 37.3 82.5 82.9 76.6 82.8 54 79.7 39.1 85.4 51.7 71.0
W-OoD [6]CVPR’22 91.0 80.1 34.1 88.1 64.8 68.3 87.4 84.4 89.8 30.1 87.8 34.7 87.5 85.9 79.8 75.0 56.4 84.5 47.8 80.4 46.4 70.7
FPR [2]ICCV’23 91.4 81.8 35.1 82.4 68.7 73.7 88.8 80.5 85.9 33.3 82.4 45.3 82.5 81.6 72.9 78.5 50.7 82.6 46.5 83.1 49.1 70.3

Single-staged methods
1Stage [1]CVPR’20 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
AFA [9]CVPR’22 89.7 79.3 30.3 79.8 64.6 62.0 82.3 66.5 80.5 29.6 83.9 45.0 80.2 76.0 70.1 76.1 51.8 84.8 44.6 59.6 52.8 66.0
SeCo(Ours) 92.5 86.3 39.8 88.8 68.4 78.5 88.1 80.1 90.4 38.3 84.5 52.4 86.9 85.9 73.5 84.4 62.4 89.6 57.4 62.2 62.6 74.0
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Figure S1: Co-occurrence frequency matrix among category labels of PASCAL VOC train set. Each entry
means the co-occurrence frequency between the query category(y-axis) and the key category(x-axis). The
diagonal entries mean the single-category items.

Figure S2: Performance of convergence speed of SeCo compared to AFA [9] and ToCo [10]. The experiment
is implemented on VOC val set and the semantic segmentation result is evaluated with mIoU.
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Figure S3: Qualitative segmentation performance on PASCAL VOC. The comparisons are conducted among
AFA [9], ToCo [10] and ours. SeCo precisely differentiates the co-occurring foregrounds and filters out
distracting backgrounds.

Figure S4: Qualitative segmentation performance on MS COCO. The comparisons are conducted among
AFA [9], ToCo [10] and ours. SeCo accurately localises the co-occurring objects.

Figure S5: Qualitative CAM visualization of SeCo, AFA [9], and ToCo [10]. SeCo effectively suppresses the
false positive pixels from backgrounds and foregrounds
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