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A. Network Details

Figure 1. Network Architecture of TULIP: The network has a

symmetric design in the encoder and decoder. Each layer in the en-

coder consists of two Swin Transformer blocks and a patch merg-

ing layer which downscales the spatial resolution of feature maps.

For the decoder, a patch unmerging layer succeeds two subsequent

blocks for upscaling. A bottleneck layer is applied between the en-

coder and decoder to enhance the high-level feature representation.

The range image is pre-processed with logarithmic transformation

before being fed into the network.

A.1. Swin Transformer Block

The structure of a Swin Transformer [11] block is presented

in Fig. 2. The block consists of two parts. The first part

takes an input tensor with dimensions H × W × C and

initially, it performs layer normalization (LN) on the input.

Then, it reshapes the feature vector into a tensor with di-

mensions HW

M2 × M2 × C. This is achieved by partition-

ing the input into non-overlapping local windows of size

M × M , resulting in a total of HW

M2 windows. For each

of these local windows, the layer computes the query (Q),

†Authors share last authorship.

key (K), and value (V) matrices and applies the standard

self-attention mechanism. The mathematical formulation is

shown in Eq. 1, where B is a learnable relative positional

encoding and
√
d is a scaling factor. The second part has the

same design and computes the attention with shifted win-

dows.

Attention(Q,K, V ) = SoftMax(
QKT

√
d

+B)V, (1)

Figure 2. Details of a Swin Transformer block. MLP: Multiple

Layer Perceptron, LN: Layer Normalization, W-MSA: Window

Multi-Head Self Attention, SW-MSA: Shifted Window Multi-

Head Self Attention

A.2. Monte Carlo Dropout

Inspired by the prior work in [12], we apply Monte Carlo

Dropout (MC-Dropout) [4] to refine the prediction. For a

given input x, a neural network with dropout makes a pre-

diction ŷ on each forward pass. Due to the active dropout

layer in the inference, each forward pass effectively uses a

differently configured model. By repeating the process N

times (N = 50 in this work), it yields a set of different out-

puts {ŷ1, ŷ2, ..., ŷN}. We then compute the mean of these
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N outputs as the prediction (ȳ) and variance (σ̄) which in-

dicates the uncertainty. The formulation is shown in Eq. 2.

ȳ =
1

N

N
∑

i=1

ŷi σ̄2 =
1

N

N
∑

i=1

(ŷi − ȳ)2 (2)

In terms of LiDAR point cloud, the uncertainty can be

treated as the noise in the estimation of 3D coordinates.

Hence, with a pre-defined threshold parameter λ, we can

remove the noisy points and obtain the final prediction (ȳ∗)

with the decision rule in Eq. 3. To obtain the final results,

we chose a value of 0.03 for KITTI [5] and CARLA [7],

and 0.0005 for DurLAR [9] dataset.

ȳ∗ =

{

ȳ, if σ̄ < λ ∗ ȳ
0, otherwise

(3)

To qualitatively show the effectiveness of post-processing

the output, we visualize the range image in cases with and

without MC-Dropout in Fig. 3.

(a) Ground-Truth

(b) w/ MC-Dropout

(c) w/o MC-Dropout

Figure 3. MC-Dropout cleans the range image by removing the

noisy points.

B. Additional Results

B.1. Discussion

In the main experiments, our method presents a clear im-

provement in all three benchmarks. However, the enhance-

ment for CARLA [7] and DurLAR [9] is not as significant

as for KITTI [5] dataset. In this section, we want to elabo-

rate on this phenomenon.

(a) DurLAR

(b) CARLA

(c) KITTI

Figure 4. Example of LiDAR point cloud (ground-truth) from the

test split of each dataset. DurLAR data contains more noise in the

scan pattern and CARLA data is collected in a noiseless simulation

environment.

DurLAR: The dataset contains 5 sub-datasets recorded

from 5 different routes. To fairly create the train and test

split from the dataset, we selected the ”highway” route as

the test sequence. This route contains lots of irregular ob-

jects such as trees and grass (as shown in Fig. 4), which

are harder to upsample than regular objects such as houses

or cars that are more frequently found in KITTI. Due to a

sensor with a longer range, there are also roughly 10 times

more points beyond 30 meters compared to KITTI. The

point sparsity at higher ranges makes the reconstruction dif-



ficult. To support the argument, we additionally evaluated

KITTI and DurLAR on points that are closer than 30 meters

from the sensor origin in Tab. 1. The quantitative results in-

dicate a similar trend of increase in Mean Absolute Error

(MAE) and Chamfer Distance (CD) for the two datasets.

CARLA: The simulated point clouds in CARLA exhibit

a high level of orderliness. This benefits the interpolation

methods (e.g. ILN) that are capable of upsampling while

keeping more geometrical accuracy, however, the method

suffers from repeatedly upsampling points in sparse regions.

Conversely, our method distributes point upsampling across

the scene more uniformly. We present visualizations for

CARLA in columns I-J of Fig. 6. Quantitatively, in the

main expeirments of LiDAR upsampling, the competitive

score in IoU but remarkably lower score in Chamfer Dis-

tance (CD) for ILN also confirms the notion that our method

is superior in uniformity of upsampling, resulting in lower

error in Euclidean distance.

B.2. Inference Time

We evaluate the inference time on the KITTI dataset [5].

A single forward pass for TULIP-L takes 1.33s. For the

Monte-Carlo Dropout we run the separate forward passes

in a batch and calculate the filtered result, which increases

the effective inference time of TULIP-L to 1.61s (TULIP

1.13s). This is slower than ILN [7] (1.14s) and LIDAR-

SR [12] (1.16s) and comparable to Swin-IR [10] (1.63s).

B.3. Model Parameters

We present the number of model parameters in Tab. 2.

Swin-IR [10] has fewer parameters because it utilizes a

residual network design and hence, the scale of the decoder

is much smaller than our method which deploys a U-Net-

based architecture. ILN [7] learns interpolation weights for

neighboring points instead of upscaling the spatial resolu-

tion of features, so the network contains even fewer param-

eters at the cost of more memory for storing query points

during training. LiDAR-SR [12] is comparable due to its

similar network design as ours. It introduces a conven-

tional CNN-based U-Net architecture for LiDAR upsam-

pling and exceeds the total number of parameters in TULIP.

In the main experiments, TULIP-L achieves more gain in re-

construction accuracy, however, the parameters are 4 times

more than the baseline. A future study on shrinking net-

work size is definitely of interest. Since we infer that most

of the attention weights corresponding to those pixels with

no occupancy (no beam return in 3D space) in the range

image can be discarded without significantly compromising

the accuracy, some model pruning techniques [6, 14] can

help to reduce the training costs, in addition, they can ben-

efit shortening inference time as well.

B.4. Generalization Capability

We test the DurLAR dataset [9] using a model trained on

the CARLA [7] dataset to assess the generalization capa-

bility of different methods. The outcomes are displayed in

Table 3. Both sets of results, one from training on a differ-

ent dataset and the other from training on the same dataset

are presented to illustrate the degeneration in upsampling

performance resulting from the domain shift. Although our

method still outperforms most of the other methods in this

case, except that it is slightly inferior to ILN [7] in terms

of IoU, we can observe significant drops in 3D evaluation

metrics (IoU 17.3% and Chamfer distance 97.2%).

B.5. Different Upsampling Scales

We test the adaptability of our approach in upsampling with

different scaling ratios. As it is hard to find a real-world Li-

DAR configuration that can scan the same scene with mul-

tiple resolutions, we use CARLA [7] dataset, created within

the simulator and contains four different output resolutions:

16 × 1024, 64 × 1024, 128 × 2048 and 256 × 4096. We

regard 16 × 1024 data as input and the other three as tar-

get resolutions for upsampling. In Tab. 4, regarding to ×4
upsampling with CARLA dataset, unlike upsampling from

32 to 128 channels, Implicit LiDAR Network (ILN) [7] sur-

passes ours with respect to all evaluation metrics. Such an

interpolation-based method tends to work more effectively

for LiDAR upsampling in a noise-free environment, given

that the target resolution and upsampling ratio are not ex-

ceedingly high. Raising the target resolution to 128×2048,

ours is compatible with ILN, and coming to ×64 upsam-

pling, ours leads ILN by certain margins except IoU.

B.6. Downstream Tasks

Apart from the main section regarding upsampling LiDAR

point cloud and evaluating the results quantitatively and

qualitatively with different metrics, we want to further as-

sess how well the upsampling process preserves the shape

of foreground objects, hence we conduct an experiment us-

ing an object detection model applied to the upsampled

point clouds. In particular, we assessed our method on

two downstream tasks: 3D object detection and localiza-

tion, which can certainly benefit from the densification of

the LiDAR point cloud.

For object detection, we refer to PointPillar [8], which is

one of the most commonly used models for 3D object de-

tection. To make a fair comparison, we directly use a model

pre-trained on KITTI Object Dataset [5] and generate the

3D bounding boxes on the generated, ground truth and low-

resolution point clouds. For evaluation, we utilize the Aver-

age Precision (AP) with 11 precision-recall positions at an

overlap threshold of 0.7 IoU and additionally calculate the

mean Average Precision (mAP) over three different classes.

Results are shown in Tab. 5. Compared to conventional



KITTI [0-30m] DurLAR [0-30m]

Model MAE ↓ IoU ↑ CD ↓ MAE ↓ IoU ↑ CD ↓
LIDAR-SR 0.5393 0.1041 0.1042 1.5180 0.1682 0.1079

ILN 0.9773 0.3409 0.1346 1.5672 0.3418 0.0908

TULIP (Ours) 0.4174 0.4462 0.0286 1.2408 0.3662 0.0223

TULIP-L (Ours) 0.3678 0.4673 0.0246 1.1645 0.3758 0.0208

Table 1. We evaluated upsampled point clouds within 30 meters. For Localization, we evaluated the performance of Range-MCL [1],

additionally on 64x1024 ground-truth (HR) and 16x1024 input (LR) of KITTI. *The model was evaluated on the full range as requested.

Swin-IR LiDAR-SR ILN* TULIP (Ours) TULIP-L (Ours)
11.8M 34.6M 1.3M 27.1M 108.1M

Table 2. Number of parameters of state-of-art methods in LiDAR

upsampling and image super-resolution. We chose the network

trained on KITTI dataset.

Model MAE ↓ IoU ↑ CD ↓
SRNO [13] 2.5704 0.1467 0.9721

HAT [2] 2.6424 0.1561 0.8667

SWIN-IR [10] 2.2080 0.1809 0.4714

LIIF [3] 1.9524 0.1757 0.1706

LIDAR-SR [12] 2.0088 0.1352 0.4076

ILN [7] 1.9044 0.3037 0.1291

TULIP (Ours) 1.8468 0.2995 0.1256

Table 3. Quantitative comparison of the cross-dataset experiment:

results are obtained by testing DurLAR dataset with the model

trained on CARLA dataset.

range image upsampling techniques [7, 12], our approach

presents significantly superior results in 3D object detec-

tion. Although there remains a clear gap to the ground truth

point cloud, the incorporation of an upsampling network to

generate a denser point cloud proves beneficial in detecting

more objects and achieving more accurate detection.

For localization, we chose RangeMCL [1], which builds an

Model MAE ↓ IOU ↑ CD ↓
Output Resolution: 64× 1024

*ILN [7] 1.4168 0.3927 0.4447

TULIP (Ours) 1.4776 0.3471 0.6087

Input Resolution: 128× 2048
*ILN [7] 1.5368 0.3476 0.2993

TULIP (Ours) 1.5422 0.3451 0.2972

Output Resolution: 256× 4096
*ILN [7] 1.6088 0.2653 0.2219

TULIP (Ours) 1.5984 0.2523 0.1988

Table 4. Quantitative results of scaling experiments. The input res-

olution is fixed with 16×1024 while the output resolution is vary-

ing. *We compare our method with Implicit LiDAR Network [7]

and obtain the results using the provided pretrained model.

observation model formulated from the discrepancies be-

tween real and rendered range images from a mesh map

for a Monte Carlo Localization framework, to recalibrate

the importance of weights attributed to each particle. We

followed the evaluation steps introduced in the work and

assessed the localization pipeline on the point clouds up-

sampled from different methods. In Tab. 5, it shows that

upsampling the point cloud with our method generally im-

proves the results of localization compared to using the low-

resolution one directly while ILN [7] and LiDAR-SR [12]

lead to a larger error in location.

C. Additional Qualitative Results

Besides more results of KITTI dataset shown in Fig 5, we

provide additional visualization coming from the other two

datasets in Fig 6.
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Figure 5. Additional Qualitative Results of KITTI Dataset with full comparison: Our approach outperforms all state-of-the-art approaches

in upsampling the point cloud in a geometry-aware manner, specifically in terms of reconstruction of objects like cars, walls, and lidar

sweeps while producing much fewer noisy points.
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Figure 6. Qualitative Results on DurLAR [9] (F-H) and CARLA [7](I-J). Our approach can outperform state-of-the-art methods in

upsampling scene-related contexts with complex and simple geometry and under both noisy and noiseless circumstances.
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