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1. Experimental Settings

Feature Projection. For the fine-tuning model, we follow
[4] to use an extra three conv-layers for feature projection,
while the pre-training model employs another single conv-
layer for projection. To share the projection parameters, we
use the same three conv-layers for both the pre-training and
fine-tuning models.

Point-based Pre-training. To compare with occupancy-
based self-supervised learning, we integrate ALSO [2] into
our framework, utilizing volumetric inputs instead of Bird’s
Eye View (BEV) representation. We sample 4096 query
points for each scene, comprising three types: randomly
sampled empty query points between the LiDAR sensor
and surface points, empty query points positioned just be-
fore surface points within a threshold of 0.1, and full query
points located behind surface points within a threshold of
0.1. Subsequently, the sampled query points serve as oc-
cupancy targets (empty for 0 and full for 1) for supervising
voxels within a radius of 1.0. We employ 4 linear layers
with a hidden dimension of 64 on each voxel to predict oc-
cupancy. The binary cross-entropy loss is used for the esti-
mated occupancy and targets during the training process.

For the MAE-based model, we adopt block-wise mask-
ing with a masking size of 8 to selectively remove portions
of the input point clouds. After the encoder, masked regions
are padded with zeros and combined with visible features to
form regular dense voxel features. Finally, a 3D conv-layer
with a kernel size of 3 is applied to predict the local coor-
dinates of point clouds in the masked voxels. The recon-
struction loss is computed using the L2 Chamfer Distance,
following the approach in [10].

For the contrastive-based model, we follow [7] to con-
trast image and point features to integrate 2D knowledge
into 3D points. The ConvNeXt-small [8] and VoxelNet [9]
are adopted as the image encoder and the point encoder,
respectively. We project point clouds onto the multi-view
images, sampling 512 points per image. Bilinear interpo-
lation is employed to extract image features from the pro-
jected point cloud coordinates, while trilinear interpolation
is used to fetch point features from voxel features based on
the point cloud positions. Separate linear layers are applied
to project the features accordingly. Paired pixel-point fea-
tures are considered positives, while others are treated as
negatives. We apply InfoNCE loss with a temperature of
0.07 to encourage the alignment of positives and discour-
age negatives.

Different View Transformations. We investigate various
view transformation strategies and make minor adjustments
to seamlessly integrate them into our volumetric represen-
tations. In the case of BEVformer [6], we randomly initial-
ize voxel-based queries and use a learned positional embed-
ding [1] based on the voxel coordinates. The voxel queries
are projected onto multi-view images, and image features
are incorporated into the queries through deformable atten-
tion [11]. Given that one voxel query may project onto dif-
ferent view images, we employ average pooling on the out-
put features to handle this scenario. For both BEVDet [3]
and BEVDepth [5], image features are projected onto 3D
space and pooled to obtain voxel features. In the view trans-
formation of BEVDepth, we additionally apply depth su-
pervision based on the depth of projected point clouds in
the image coordinates. Specifically, we treat depth estima-
tion as a classification task by discretizing depth into sev-
eral bins and use binary cross-entropy as the loss function
for supervision.

2. Supplementary Experiments

Table 1 shows supplementary ablation studies of the ef-
fectiveness of the masking, sampling, and loss. The first
and fourth rows demonstrate a 2.5 NDS improvement over
the baseline through our rendering-based pre-training, even
without additional point clouds as input. In the second and
third rows, as well as the fifth and sixth rows, the effective-
ness of masking in enhancing representation learning dur-
ing pre-training is demonstrated. The third and fourth rows
illustrate the efficacy of the proposed depth-aware sam-
pling. In the third and sixth rows, it’s emphasized that inte-
grating additional information, such as depth for geometric
constraints, further improves the learned features.

3. Qualitative Results

In Figure 1, we present 3D detection results in camera
space and BEV (Bird’s Eye View) space with LiDAR point
clouds. Our model can predict accurate bounding boxes for
nearby objects and also shows the capability of detecting
objects from far distances.
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Table 1. Ablation studies of the masking, sampling, and loss.

Masking
Sampling Loss

NDS
Random Depth-aware RGB Depth

25.2
✓ ✓ 26.7

✓ ✓ ✓ 27.9
✓ ✓ ✓ 27.4

✓ ✓ ✓ 31.7
✓ ✓ ✓ ✓ 32.9

Figure 1. Illustration of the detection results. The predictions are shown on multi-view images and bird’s eye view with LiDAR points.
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