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A. ULDA on Autonomous Driving
A.1. Motivation

Autonomous driving has wide applications for intelligent
transportation systems, such as reducing the labor costs, en-
hancing the comfortableness of customers, and so on [14,
60]. In some cases, the autonomous vehicle might work in
adverse weather conditions, like night, rain, fog, and so on.
These complex scenarios might take a big challenge to the
autonomous driving system.

However, in practical terms, it is not always feasible to
obtain comprehensive data for every possible adverse con-
dition due to the high costs and difficulties associated with
data collection. Instead, practitioners may only have a con-
ceptual understanding or hypothetical descriptions of po-
tential driving scenarios. In this case, the ability to augment
a model’s performance in such predicted scenarios without
actual data collection is preferred.

Therefore, our proposed Unified Language-driven Zero-
shot Domain Adaptation (ULDA) holds great potential in
autonomous driving scenarios and could substantially en-
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hance the future advancement of autonomous driving tech-
nology.

A.2. Proposed Benchmark
To further explore the potentially challenging autonomous
driving scenarios, we use GPT-4 to generate several diffi-
cult situations. Our prompt is “Please describe some po-
tential adverse driving scenarios, which pose challenges for
autonomous driving, such as ‘Driving in fog’, ‘Driving in
snow’.” After careful consideration of the comprehensive
answers provided by GPT-4 and the scene understanding ca-
pabilities of CLIP, we choose ‘sandstorm’ and ‘fire’ as addi-
tional scenarios to augment the existing autonomous driving
scenes (rain, snow, fog, night). These scenarios have been
selected based on their challenging nature and the relatively
limited availability of relevant data.

Due to the rarity of these scenarios, collecting images
for them has been challenging. We make significant ef-
forts to gather several images that fulfill the requirements
for autonomous driving from publicly accessible websites
with copyright permissions. These images have been anno-
tated and will serve as a new benchmark. All collected data
will be released.

A.3. Results
We choose Cityscapes [5] as the source domain and
ACDC [42] with Fog, Night, Rain, Snow, as well as our col-
lected Sandstorm and Fire as the target domain. All other
model implementation details remain consistent with the
main experiments. In order to demonstrate the effective-
ness of our approach, we train the state-of-the-art (SOTA)
method, PØDA [6], with six distinct segmentation heads
for specific domains. In contrast, our model is exclusively
trained with a unified, all-in-one head.

As illustrated in Table 1, our proposed method consis-
tently outperforms all previous models in the Autonomous
Driving scenario. Our method achieves improvements of
8.11% and 1.91% over the baseline source model and the
former state-of-the-art method, PØDA∗, respectively. No-
tably, our approach, employing a single head, even sur-
passes the performance of PØDA∗ and achieves a 1.82%
mIoU improvement, which requires training separate heads
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Scenarios Source2Fog Source2Night Source2Rain Source2Snow Source2Sandstorm Source2Fire
mean-mIoU

Domain Description driving in fog driving at night driving under rain driving in snow driving in sandstorm driving through fire

Source 49.98 18.31 38.20 39.28 19.58 10.08 27.57
CLIPStyler 48.87 20.83 36.97 40.31 23.16 12.36 30.42

PØDA∗ 51.54 25.03 42.31 43.90 24.39 15.43 33.77
ULDA 53.02 24.61 45.12 46.06 25.72 19.52 35.68

Table 1. Performance of ULDA on Autonomous Driving. We use Cityscape as the source domain and ACDC and our collected data as
the six target domains in this setting. Mean-mIoU represents the average mIoU value in six scenarios. PØDA∗ represents the model that
uses different segmentation heads in specific domains with domain-id provided, while our ULDA utilizes a unified, all-in-one head.

for different scenarios. Furthermore, in challenging scenar-
ios like ‘driving through fire’ and ‘driving under snow,’ the
backgrounds are almost red and white, respectively. Our
method demonstrates a significant improvement compared
to the previous approach, increasing by 4.09% and 2.16%,
respectively. These results demonstrate that contributed to
Hierarchical Context modeling and Text-Driven Rectifier,
our method can adeptly and precisely extract and utilize
the multi-level correlation between images and text, thereby
achieving significant improvement in complex scenarios.
Additionally, our proposed domain-consistent representa-
tion learning ensures consistency across diverse domains,
enabling our model to generalize effectively under a single
unified segmentation head. What’s more, we present the
qualitative analysis in Sec. F.

B. Additional Experiments
In this section, we demonstrate the effectiveness of our
method by comparing it to the One-shot Domain Adapta-
tion method in Sec. B.1. Furthermore, we demonstrate that
our method can achieve further improvement based on the
domain generalization method in Sec. B.2.

B.1. Effectiveness Compared One-shot Domain
Adaptation

To show the effectiveness of our ULDA, We evaluate it
against SM-PPM [58]1, a SOTA method in one-shot un-
supervised domain adaptation (OSUDA). The OSUDA set-
ting allows access to a single unlabeled target domain im-
age for adapting the model to the new target domain. In
SM-PPM, this image acts as an anchor for mining target
styles. For a robust comparison, we adhere to the previous
settings. We employ five randomly selected target images
to train the SM-PPM. Additionally, we train five different
models for each image, each initialized with a unique ran-
dom seed. The mean Intersection over Union (mIoU) val-
ues reported represent the average across these 25 models.
It’s important to note that a direct comparison of the ab-
solute results between the two models may not be entirely
fair due to the differences in their backbones (ResNet-101

1We use official code https://github.com/W-zx-Y/SM-PPM

Source Target eval. One-shot SM-PPM [58] Zero-shot ULDA

CS
ACDC Night 13.07 / 14.60 (∆=1.53) 18.31 / 25.40 (∆=7.09)
ACDC Snow 32.60 / 35.61 (∆=3.01) 39.28 / 46.00 (∆=6.72)
ACDC Rain 29.78 / 32.23 (∆=2.45) 38.20 / 44.94 (∆=6.74)

GTA5 CS 36.60 / 42.80 (∆=6.20) 36.38 / 42.91 (∆=6.53)

Table 2. Effectiveness compared to OSUDA. Semantic segmen-
tation performance (mIoU%) for source / adapted models, and gain
provided by adaptation (∆ in mIoU). For adaptation, SM-PPM
has access to one target image and adapts three specific models on
ACDC, while ULDA not has access to any target domain image
and utilizes one unified model.

Method Fog Night Snow Rain Mean

Source 49.98 18.31 39.28 38.20 36.44
Source-G 51.48 21.07 42.84 42.38 39.69
PØDA∗ 51.54 25.03 42.31 43.90 40.65
PØDA∗-G 52.87 24.86 44.34 43.17 41.31
ULDA 53.55 25.40 44.94 46.00 42.47
ULDA-G 54.21 25.94 46.02 47.15 43.33

Table 3. Effectiveness with DG method. ‘-G’ means the
source model is trained with the domain generalization method [7].
Source-only-G model is enhanced with a domain generalization
technique. PØDA∗ represents the model that uses different seg-
mentation heads in specific domains with domain-id provided.

in SM-PPM versus ResNet-50 in ULDA) and segmentation
frameworks (DeepLabv2 in SM-PPM versus DeepLabv3+
in ULDA). Therefore, our analysis focuses on the improve-
ment each method offers over its respective naive source-
only baseline, also considering the baseline’s performance.
As shown in Table 2, in the Cityscapes→ACDC scenario,
both the absolute and relative improvements of ULDA over
its source-only version surpass those of SM-PPM.

Notably, the SM-PPM utilizes three different images to
adapt three domain-specific models to the three scenarios
on ACDC. However, our ULDA does not have access to
any target domain image and utilizes one unified model to
adapt to any scenario.

https://github.com/W-zx-Y/SM-PPM
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Figure 1. Ablation Study. The impact of the domain numbers on
the model’s performance.

B.2. Effectiveness on Domain Generalization
Domain generalization (DG) is a setting that aims to de-
velop robust models that can generalize well to new, unseen
domains. [7] is a current SOTA method in Domain gen-
eralization by simply perturbing feature channel statistics.
Therefore, we aim to demonstrate that by incorporating the
DG method, our approach can achieve further improvement.
We showcase our effectiveness across four target domain
scenarios in Cityscapes-ACDC. The detailed setting is fol-
lowed by PØDA [6] Table 7.

First, we follow the DG sota method [7] to train the
Source-G model, which augment features by shifting the
per-channel (µ,σ) with Gaussian noises sampled for each
batch of features. As shown in Table 3, the Source-only-
G consistently outperforms the Source-only model, demon-
strating a generalization capability in the Semantic Segmen-
tation task. Moreover, when integrating the Domain Gener-
alization technique into our proposed ULDA, significant en-
hancements are observed across all target domains, leading
to further improvements in the mean-mIoU metric. Notably,
in comparison to the PØDA∗-G method, our ULDA-G ap-
proach outperforms it with a mean-mIoU improvement of
2.02%. Moreover, our ULDA method eliminates the need
for Domain-ID and utilizes a single model for all scenarios.

These experiments on Domain Generalization also illus-
trate that our proposed ULDA setting is not a degraded ver-
sion of domain generalization. Additionally, these two set-
tings can mutually benefit each other, as discussed in Sec. 6
of the main paper.

B.3. Additional Ablation Study
Our proposed ULDA approach employs a single unified
all-in-one segmentation head to adapt to various target do-
mains. Consequently, a natural question arises: how does
the number of domains impact the performance of the
model? Therefore, we conduct a comparative analysis of
the changes in mIoU across three scenarios, namely Night,
Rain, and Snow, while varying the number of domains from

3 to 6. Specifically, the four-domain setting includes Night,
Rain, Snow, and the addition of Fog (ACDC); the five-
domain setting comprises Night, Rain, Snow, the addition
of Fog (ACDC), and GTA5; the six-domain setting involves
Night, Rain, Snow, the addition of Fog (ACDC), and our
collected Sandstorm and Fire.

As shown in Fig. 1, the mIoU for rainy and snowy scenes
exhibits an upward trend with an increase in the number
of domains. And nighttime scenes exhibit a fluctuating
pattern. This result demonstrates that our proposed Do-
main Consistent Representation Learning plays a crucial
role in maintaining consistent performance across domains,
preventing any decline in performance. The gradual im-
provement in mIoU for rainy and snowy scenarios can be
attributed to the increased exposure to diverse domains,
allowing the model to acquire more generalized knowl-
edge and enhance its performance. However, the nighttime
scenario, which significantly differs from daytime scenar-
ios, faces challenges in extracting relevant knowledge from
other scenarios. Nonetheless, even with an increasing num-
ber of domains, our method consistently maintains its per-
formance without any decline.

C. Implementation Details

In this study, we follow the implementation details from
the previous work, PØDA [6]. Specifically, we utilize
the DeepLabv3+ framework [4] incorporating a backbone
model of pre-trained CLIP-ResNet-502. For the source
domain, the model is trained for 200,000 iterations us-
ing randomly cropped 768x768 images. Training is per-
formed with a polynomial learning rate schedule, starting
at lr = 10−1 for the classifier, and employing Stochastic
Gradient Descent [2] with a momentum of 0.9 and weight
decay of 10−4. Standard color jittering and horizontal flip
augmentations are applied to these crops.

During Stage-1, where the PIN is trained to simulate the
target domain feature, we make use of the source feature
maps after the first layer. The style parameters µ and σ
are represented as 256-dimensional real vectors. The CLIP
embeddings are 1024D vectors. To encode the target de-
scriptions, we adapt the ImageNet templates from [41] and
use them in the encoding process of the TrgPrompt.

In the Fine-tuning stage (Stage 2), we start with the
pre-trained model on the source domain and focus on fine-
tuning the classifier head. This process involves working
with augmented PIN features, denoted as f s→t, and contin-
uing the process for 2,000 iterations.

To evaluate the adaptation performance, we mainly uti-
lize the mean Intersection over Union (mIoU%) metric.
This metric allows us to assess the performance of the mod-
els on target images at their original resolutions.

2https://github.com/openai/CLIP

https://github.com/openai/CLIP


D. Additional Discussions

What’s the difference between our and previous set-
tings? To facilitate a more comprehensive comparison be-
tween our proposed setting and the previous settings, we
further analyze the target data format and the number of
models required for N target domains. As shown in Table 4,
Standard Unsupervised Domain Adaptation (UDA), One-
Shot Unsupervised Domain Adaptation (OSUDA), Few-
Shot Unsupervised Domain Adaptation (FSUDA) all re-
quire access to the target domain image. In contrast,
Prompt-driven Zero-shot Domain Adaptation (PØDA) and
our proposed Unified Language-driven Zero-shot Domain
Adaptation (ULDA) only need to access the target domain
language description to extract the target domain knowl-
edge, which is practical and less costly. Besides, compared
to the previous settings, only ULDA requires a single model
to adapt to diverse target domains without domain-IDs, in-
stead of using domain-specific heads as in previous meth-
ods.

Why not incorporate TDR to Stage-1? We present a de-
tailed derivation regarding the question, ”Why not incorpo-
rate TDR into Stage-1?” as discussed in Section 6 of the
main paper here.

For the original source domain feature, we can obtain
the corresponding target domain feature fs→t through the
following formula (Eq. (1) in the main paper):

fs→t = PIN (fs,µ,σ) = σ

(
fs − µ (fs)

σ (fs)

)
+ µ.

This normalization process transfers features from the
source domain to the distribution of the target domain.

For fs→t, we know
fs − µ (fs)

σ (fs)
theoretically follows

the distribution N (0, 1), thus E[
fs − µ (fs)

σ (fs)
] = 0,

Var(
fs − µ (fs)

σ (fs)
) = 1. therefore, we could calculate the

E(fs→t) and V ar(fs→t) as:

E (fs→t) = E
[
σ

(
fs − µ (fs)

σ (fs)

)
+ µ

]
= E(µ) + σ

[(
fs − µ (fs)

σ (fs)

)]
= µ+ σ · 0
= µ.

(1)

Var (fs→t) = Var

[
σ

(
fs − µ (fs)

σ (fs)

)
+ µ

]
= Var

[
σ

(
fs − µ (fs)

σ (fs)

)]
= σ2 Var

[
fs − µ (fs)

σ (fs)

]
= σ2

(2)

Hence, for the simulated fs→t, we have std(fs→t) = σ,
mean(fs→t) = µ. Substituting them into main paper’s
Eq. (10) yields:

f̃s→t = β

(
σ̃

(
fs→t − µ (fs→t)

σ (fs→t)

)
+ µ̃

)
+ fs→t

= β

(
σ̃

(
fs→t − µ

σ

)
+ µ̃

)
+ µ+ σ

(
fs − µ (fs)

σ (fs)

)
.

= β

(
σ̃

(
fs − µ (fs)

σ (fs)

)
+ µ̃

)
+ µ+ σ

(
fs − µ (fs)

σ (fs)

)
.

=

(
fs − µ (fs)

σ (fs)

)
(βσ̃ + σ) + (βµ̃+ µ).

(3)
As discussed in the main paper Sec. 6, σ̃ and µ̃ are

derived by passing text embeddings through a linear layer.
The parameters σ and µ are learnable and are designed to
simulate features of the target domain. During Stage-1, it
is necessary to optimize µ and σ to transform the source
domain features into those of the target domain, ensuring
alignment with the text embeddings. However, as the text
embeddings are directly input into the linear layer to obtain
µ̃ and σ̃, this process results in µ and σ not being opti-
mized, leading to a trivial solution. Therefore, we may not
integrate rectification into Stage-1.

E. Related Work
Unsupervised Domain Adaptation (UDA) In UDA, a
model trained on a labeled source domain is adapted to an
unlabeled target domain. The majority of the approaches
rely on discrepancy minimization [33, 34], adversarial train-
ing [8, 50] and self-training [25, 69]. These techniques pri-
marily focus on reducing the domain gap at different levels:
input [9, 63], features [30, 43, 55, 64], or output [50, 51].
However, in real-world scenarios, obtaining a substantial
number of target domain images can be challenging, lead-
ing to the development of various domain adaptation set-
tings [6, 31, 32, 37, 38, 52, 53, 62].

Recently, one challenging setting of One-Shot Unsuper-
vised Domain Adaptation (OSUDA) has been proposed.
This setting requires models to adapt to a target domain
with access to only one image from that domain. To the
best of our knowledge, only three studies focusing on se-
mantic segmentation within this context have been docu-



Setting Target Data Domain-ID Model Number
Standard Unsupervised Domain Adaptation Image Require N
One-Shot Unsupervised Domain Adaptation [36] Image Require N
Few-Shot Unsupervised Domain Adaptation [15] Image Require N
Prompt-driven Zero-shot Domain Adaptation [6] Scenario Description Require N
Unified Language-driven Zero-shot Domain Adaptation Scenario Description No Require 1

Table 4. The difference between our proposed Unified Language-driven Zero-shot Domain Adaptation and related adaptation settings.
Target Data means the form of the target domain data. Domain-ID indicates whether the model requires the domain ID during testing.
Model Number means for N target domains, the required segmentation head’s Number.
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Figure 2. Qualitative Analysis. We compare the qualitative results of Autonomous Driving scenarios. Only our method employs a single
segmentation head across all scenarios, other methods train a segmentation head specifically for each domain.

mented [1, 36, 58]. Luo et al. [36] highlight the limita-
tions of traditional UDA methods when limited to a single
unlabeled target image. They propose a style mining algo-
rithm that combines a stylized image generator with a task-
specific module to prevent overfitting. In contrast, Wu et

al. [58] introduce a novel approach named style mixing and
patch-wise prototypical matching (SM-PPM). This method
involves blending the features of a source image with those
of the target linearly, and employing patch-wise prototyp-
ical matching to mitigate negative adaptation [21]. Benig-
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Figure 3. Real data of the Text-Driven Rectifier

mim et al. [1] advance the field by introducing Stable Dif-
fusion and DreamBooth techniques. They extract domain
knowledge from the pre-trained model, enabling the trans-
fer of source images to the target image.

For the more challenging setting Zero-Shot Unsuper-
vised Domain Adaptation, where no target image is avail-
able, Lengyel et al. [20] explore day-to-night domain adap-
tation. They introduce the Color Invariant Convolution
Layer (CIConv) to achieve network invariance under vary-
ing lighting conditions. However, this approach heavily re-
lies on the physics prior knowledge and is specifically tai-
lored to a certain type of domain gap.

More recently, Fahes et al. [6] introduced a new setting
named Prompt-driven Zero-shot Domain Adaptation. This
setting, which does not allow access to the target domain
data, leverages natural language descriptions of the target
domain to adapt the model to new environments. PØDA
utilizes CLIP to extract the target domain knowledge em-
bedded within these natural descriptions. It employs a two-
stage process to simulate target domain features, effectively
addressing the domain gap.

Text-driven Vision Models. Recent advancements in
contrastive image-language pretraining have led to signif-

icant achievements in multimodal learning across various
tasks such as zero-shot classification [41], multi-modal re-
trieval [12], visual question answering [22], and have facili-
tated extensive work on Multimodal Large Language Mod-
els [19, 23, 24, 26, 29, 61, 68]. These developments have
paved the way for modifying images using textual descrip-
tions, bridging the previously challenging gap between vi-
sual and linguistic representations. For text-guided style
transfer, CLIPstyler [16] diverges from relying on a gen-
erative process. This methodology offers a more realistic
approach as it is not restricted to a specific training distri-
bution, yet it simultaneously poses challenges due to the
necessity of utilizing the encapsulated information within
the CLIP latent space. The absence of a direct mapping
between image and text representations necessitates regu-
larization to effectively extract useful information from text
embeddings. In this context, CLIPstyler optimizes a U-net
autoencoder to preserve content, while varying the output
image embedding in the CLIP latent space during the opti-
mization process.

Semantic Segmentation which involves the classification
of each pixel in an image, is a crucial task in computer vi-
sion. Several notable contributions in this domain have been



introduced [3, 18, 27, 28, 44, 47, 48, 54, 56, 59, 67]. Al-
though these methods achieve impressive results, they often
require considerable amounts of pixel-level annotated data,
which can be a laborious and time-consuming task to col-
lect and annotate. Additionally, they may face difficulties in
effectively generalizing when deployed in new domains.

To address these challenges, numerous few-shot [39, 40,
45, 46] and semi-supervised [13, 17, 35, 65, 66] methods
have been proposed. Recent research has primarily focused
on addressing these challenges by employing domain adap-
tation strategies. For instance, in [63], a method is proposed
that swaps the low-frequency spectrum to align the source
and target domains. Another approach [49] involves mixing
images from both domains along with their corresponding
labels and pseudo-labels. Besides, [57] utilizes adversarial
learning to train a domain adaptation network specifically
for nighttime semantic segmentation. Furthermore, [10] in-
troduces a novel model and training strategies to enhance
training stability and mitigate overfitting to the source do-
main. Lastly, [11] employs masking of the target images
to enable the model to learn spatial context relations of the
target domain, providing additional clues for robust visual
recognition. However, these methods both require access
to the image of the target domain, which may not be feasi-
ble in some reality scenarios. Thus, we propose the Unified
Language-driven Zero-shot Domain Adaptation to address
this problem.

F. Qualitative Analysis

Qualitative Analysis on Autonomous Driving scenarios
As shown in Fig. 2, we compare our proposed ULDA with
the previous method on Autonomous Driving scenarios.
Specifically, our visualization results are generated using
a comprehensive all-in-one head, while the visualization
results of the previous state-of-the-art (SOTA) method are
generated using specific heads in each domain. The figures
demonstrate that our method performs well on various ob-
jects, such as sidewalks and sky cars. This further reinforces
the effectiveness of our approach.
Real data of the Text-Driven Rectifier In Section 4.3 of
the main paper, we assert that using simulated target domain
features to fine-tune the segmentation head may result in
persistent discrepancies between the simulated features and
the actual target domain features. To support this claim, we
present real data in Figure 3. The relationships among the
simulated feature, raw feature, real target feature, and the
target description cluster demonstrate that due to the lim-
itations of the simulating process, access to target domain
data is restricted, resulting in the failure to capture the sim-
ulated features accurately. These findings highlight the sig-
nificance of incorporating the Text-Driven Rectifier into the
fine-tuning process. By doing so, it encourages closer align-
ment between the simulated features and the target features.
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