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1. Experiments on OSIE and MIT1003

To further validate the effectiveness of our proposed
HAT in free-viewing scanpath prediction, we com-
pare HAT to the previous state-of-the-art method in
free-viewing scanpath prediction, Chen et al. [2], us-
ing the OSIE dataset [14] and the MIT1003 dataset
[7]. Here we only report SS, cIG, cNSS and cAUC
and do not use SemSS because free-viewing attention
is bottom-up and does not rely on semantics. More-
over, OSIE and MIT1003 do not contain pixel-wise

SS cIG cNSS cAUC

Human consistency 0.380 - -

Chen et al. [2] 0.326 -1.526 2.288 0.920
HAT 0.386 2.434 4.515 0.973

Table 1. Comparing free-viewing scanpath prediction al-
gorithms on OSIE (rows) using multiple scanpath metrics
(columns). The best results are highlighted in bold.

SS cIG cNSS cAUC

Human consistency 0.363 - - -

Chen et al. [2] 0.260 0.042 1.408 0.927
HAT 0.364 1.311 2.966 0.956

Table 2. Comparing free-viewing scanpath prediction algo-
rithms (rows) on MIT1003 training set using 5-fold cross
validation using multiple scanpath metrics (columns). The
best results are highlighted in bold.

segmentation annotation which is required in SemSS.
Tab. 1 and Tab. 2 consistently show that HAT sur-
passes Chen et al. [2] in all metrics by a large mar-
gin especially in cIG and cNSS on both free-viewing
datasets. The results are consistent with our findings
in Tab. 3 of the main text—HAT accurately predicts
the scanpaths (reflected by SS), with well-calibrated
confidence (as evidenced by the high cIG and cNSS).
Additionally, we compare HAT to the best alterna-
tive overall, Chen et al. [2], by evaluating the models
trained using COCO-FreeView on an unseen dataset
MIT1003 in Tab. 3. The results show that HAT out-
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SS cIG cNSS cAUC

Human consistency 0.363 - - -

Chen et al. [2] 0.210 -9.735 0.186 0.750
HAT 0.251 1.052 2.577 0.951

Table 3. Generalization to an unseen dataset MIT1003.
Both models are trained on COCO-Freeview. The best re-
sults are in bold.

performs Chen et al. [2] in all metrics and with signif-
icant improvement in cIG, cNSS and cAUC. This sug-
gests that Chen et al.’s model is prone to be overconfi-
dent, whereas HAT better calibrates the confidence in
predicting free-viewing fixations and thus provides a
more robust prediction of human attention with better
generalizability to unseen datasets.

econd ro

2. Scene-to-scene Generalization.

To further demonstrate the generalization ability of
HAT to unseen scenes, we re-partition the COCO-
Search18 dataset [3] by scenes. The new partition
contains two test sets: one test set shares the scenes
as the training set and the other test set only contains
unseen (new) scenes from the training set. We parti-
tion COCO-Search18 for each category independently
(shown in Tab. 4). For instance, for the target-absent
microwave search task, the training set only contains
kitchen scenes while the unseen test set has a variety
of other scenes including living rooms, dining rooms,
bedrooms and outdoor scenes. To further ensure the
unseen images do not exist in the training set, we re-
move the unseen images for all tasks from the training
set because some tasks share the same image stimuli.
In the new partition, the target-present set consists of
2170 training images, 568 testing images of unseen
scenes, and 273 testing images of seen scenes. The
target-absent set consists of 2299 training images, 378
testing images of unseen scenes, and 282 testing im-
ages of seen scenes.

Tab. 5 presents results of HAT in predicting the TP
and TA search scanpaths under both seen and unseen
novel scenes. We use human consistency as the base-
line. For both tasks, the gap between human consis-
tency and HAT in seen test set is smaller than that

Target-present Target-absent

Target Seen Unseen Seen Unseen

Bottle Others Food Others Kitchen
Bowl Others Kitchen Others Kitchen
Car Indoor Outdoor Vehicle Others
Chair Others Kitchen Indoor Outdoor
Clock Others Building Others Office
Cup Others Office Food Others
Fork - - Others Bathroom
Keyboard Office Others Others Bedroom
Knife Food Others Others Bathroom
Laptop Others Living Others Living
Microwave Kitchen Others Kitchen Others
Mouse Office Others Others Office
Oven - - Others Living
Potted plant Indoor Outdoor Others Food
Sink Others Kitchen Indoor Outdoor
Stop sign - - Others Vehicle
Toilet Indoor Outdoor Others Bedroom
TV Others Office Indoor Outdoor

Table 4. Data split for scene-to-scene training and test-
ing. COCO-Search-18 includes 12 scenes: outdoor, street,
building, vehicle, food, eatery, kitchen, bathroom, bedroom,
living-room (living), dining-room, office. Others in the ta-
ble includes some of the scenes excluding the unseen scene.
Outdoor in the table includes outdoor, street, building and
vehicle. In target-present, fork, oven and stop sign are not
splittable because they only contain one scene, so we re-
move them from testing.

in the unseen test set, which is expected. Impor-
tantly, HAT’s performance on the unseen scenes is on
par with human consistency in TA setting although
worse in TP setting. Note that the performance dif-
ference between seen and unseen human consistency
of TA setting is due to the fact that human consis-
tency on the TA test data with seen scenes in the
new partition is low. These results suggest that HAT
learns to extrapolate from scene to scene and gener-
alize well on novel scenes in visual search scanpath
prediction. The visualization of predicted scanpaths in
Fig. 1 further reinforces our observations. By compar-
ing HAT’s predicted scanpaths with the ground-truth
human scanpaths for unseen scenes in both TP and
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Figure 1. Visual search scanpath visualization for unseen scenes predictions. The first row is human consistency and the
second row is test result on unseen scenes. The first three columns are trained for target-present tasks for mouse, cup and car
search, the second three columns are trained for target-absent tasks for chair, microwave and bowl search.

SS cIG cNSS cAUC

TP

Human(Seen) 0.520 - -
HAT(Seen) 0.499 2.074 5.032 0.976

Human(Unseen) 0.546 - -
HAT(Unseen) 0.481 2.454 4.537 0.973

TA

Human(Seen) 0.364 - -
HAT(Seen) 0.368 1.586 2.852 0.955

Human(Unseen) 0.416 - -
HAT(Unseen) 0.416 2.075 3.115 0.962

Table 5. Quantitative result of scene-to-scene generaliza-
tion on target-present and target-absent task. The first
four columns are analysis of scene-to-scene target-present
search, and the last four columns are analysis of scene-to-
scene target-absent search. Each search contains human
consistency and testing results on seen (first two columns
of the search) and unseen scenes (last two columns of the
search).

TA settings, we unveil HAT’s robust generalization.
For example, in a TP car search task, HAT trained
on indoor scenes successfully located the car on the
top-left corner in an outdoor scene much like humans
do. Similarly, when addressing microwave searches
under target-absent conditions—with the training set
exclusively comprising kitchen scenes—HAT demon-
strates significant generalization. This is evident in
its proficient extension of predictive capabilities to
living-room scenes, as showcased in the fifth column
of Fig. 1. These findings underscore HAT’s consis-

tent and robust generalization across diverse scenes,
emphasizing its reliable performance in a spectrum of
visual search scenarios.

3. Individual Scanpath Recall

The importance of predicting personalized scanpath
lies in the fact that each person’s unique life experi-
ences shape their individual mental representations of
scenes, resulting in personalized perceptions. There-
fore, testing the model’s ability to generate diversi-
fied scanpaths is crucial to learn individual perceptions
and to avoid potential biases. To this end, we com-
pute scanpath recall to measure the extent of individ-
ual representation within the model’s predictions. For
a human scanpath in the stimuli, we consider it to be
covered if its sequence score with at least one predic-
tion is higher than the threshold τ . The ratio of cov-
ered human scanpaths to all human scanpaths is the
recall of the stimuli. Tab. 6 presents the average recall
and sequence score of HAT and Gazeformer in both
target-present and target-absent search scanpath pre-
diction. For each visual stimuli, we sample 10 scan-
paths from the fixation density map and set τ to the
human consistency of sequence score (i.e., τ = 0.5
for TP and τ = 0.381 for TA). We can see that HAT
outperforms Gazeformer in both recall and sequence
score by a large margin in target-absent scanpath pre-
diction. This is consistent with our findings in Sec. 4.1
of the main text. Although Gazeformer has a slightly
higher sequence score than HAT in TP setting, HAT
outperforms Gazeformer significantly in scanpath re-
call. This implies that HAT better captures the entire
scanpath distribution from multiple subjects whereas



Target-present Target-absent

Recall SS Recall SS

Gazeformer [12] 0.563 0.489 0.428 0.357
HAT 0.727 0.453 0.750 0.381

Table 6. Recall and sequence score comparison between
Gazeformer and HAT.

Pixel enc. Pixel dec. SemSS SS cIG cNSS cAUC

R50 MSD 0.382 0.402 1.686 3.103 0.961
R50 FPN 0.367 0.388 1.582 2.908 0.958
R101 MSD 0.372 0.397 1.598 2.998 0.961

Swin-B MSD 0.382 0.405 1.645 3.103 0.962

Table 7. Comparing different pixel encoder and pixel
decoder in HAT. The ablation experiments are done on the
target-absent set of COCO-Search18.

heads α β SemSS SS cIG cNSS cAUC

4 2 4 0.382 0.402 1.686 3.103 0.961
8 2 4 0.375 0.390 1.310 2.826 0.961
4 2 2 0.381 0.401 1.129 2.633 0.960
4 1 4 0.378 0.393 1.566 3.046 0.962

Table 8. Hyperparameters ablation using COCO-Search18
TA set.

Target-present Target-absent

Dense 0.470 0.403
Regression 0.452 0.330

Table 9. Comparison between HAT’s dense predic-
tion paradigm and Gazeformer’s regression paradigm on
COCO-Search18 using HAT’s architecture.

Gazeformer tends to overfit to an “average person”,
thereby repeatedly sampling similar scanpaths given
the same image input.

4. Additional Ablation Study

In this section, we provide further ablation on HAT.
First we ablate the backbones of HAT. We perform the
ablation experiments using the target-absent (TA) vi-
sual search fixation prediction task on the TA set of
COCO-Search18. By default, HAT uses ResNet-50
[6] as the pixel encoder and MSD [17] as the pixel
decoder. However, HAT is also compatible with other
architectures. Hence, in Tab. 7, we evaluate HAT with
different pixel encoders and decoders. Three pixel en-
coders: ResNet-50 (R50), ResNet-101 (R101) [6] and
Swin Transformer [10] (we use the base model, Swin-
B); and two pixel decoders: FPN [9] and MSD [17],
are evaluated. One can observe that MSD is better than
FPN as the pixel decoder and HAT performs the best
when using R50 and Swin-B as the pixel encoder. No-
tice that the performance gap between different pixel
encoders is small, suggesting that the performance of
HAT is robust to the choice of different pixel encoder
architectures. More importantly, all of these configu-
rations of HAT significantly outperforms all baselines
in Tab. 2 of the main text.

In Tab. 8, we also present HAT’s results with varied
hyperparameters: the number of attention heads in the
transformer module of HAT, α and β of (??), demon-
strating HAT’s robustness w.r.t. difference choices of
hyperparameters. Notably, the choice of (4, 2, 4) in the
three ablated hyperparameters achieves the best per-
formance.

Tab. 9 compares HAT’s DP task with Gazeformer’s
Reg task using HAT in TP and TA settings. The pro-
posed DP outperforms Reg in both settings, especially
in TA setting. This aligns with our findings in Tab. 1-
3 of the main text which show that Gazeformer’s Reg
paradigm, assuming a Gaussian fixation distribution,
is less effective for TA and FV scanpaths.

5. Additional Qualitative Analysis

5.1. Model interpretability

Peripheral contribution map visualization. In Sec.
4.2 of the main text, we showed that the peripheral
contribution maps in HAT can be leveraged to interpret
the model’s behaviors using a target-present search ex-
ample. We also observe a similar pattern in the target-
absent (TA) setting (see Fig. 2). In Fig. 2a, we see that
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Figure 2. Visualization of the predicted scanpath, peripheral contribution map and fixation heatmap (columns) of
HAT for target-absent (a) laptop and (b) car visual search examples at every fixation (rows). We also include the predicted
termination probability τ for each step on the left. The model terminates searching if τ > 0.5.

in a TA laptop search task pixels of table and keyboard
contribute significantly in predicting human fixations
as tables and keyboards can provide spatial cues for the
laptop. This reveals a unique factor that guides visual
search attention—anchor objects [1]. In Fig. 2b, we
see that TA car search fixations are attracted to truck
pixels as trucks and cars are closely related concepts
that are considered as distractors.

Peripheral vs foveal. We also collectively analyze the
contribution of peripheral tokens and foveal tokens in
predicting human attention control under the TP, TA
and FV settings, separately. Fig. 3 visualizes the tem-
poral change of contributions of all peripheral tokens
collectively and the foveal token in predicting human
attention averaged over all test images. We observe
that the peripheral tokens contribute the most in pre-
dicting TP fixations across all fixations (forming the
yellow column on the left). This is because in TP im-
ages there is a strong target signal available in the vi-
sual periphery to guide attention. Contrast this with
FV fixations, where the contribution of the peripheral
tokens diminishes over the temporal space and the only
the current foveal token has a strong and consistent

contribution (a clear red diagonal line). An interpre-
tation of this pattern is that people have only a poor
memory of what they viewed in previous fixations and
their attention is controlled by salient pixels within a
local neighborhood around the current fixation. In-
terestingly, for TA fixations we also observe a dimin-
ishing contribution of the peripheral tokens over the
temporal space, but not as pronounced. Moreover, as
more fixations are made, the contribution of recent fix-
ations increases, approaching the pattern in FV. This
suggests that the later fixations of a TA scanpath be-
have like a FV scanpath, which confirms a finding in
[4]. Lastly, the bottom row visualizes the contribution
of each individual peripheral token (averaged over the
temporal axis), where we see peripheral tokens encode
a strong center bias for FV fixations, whereas TA fixa-
tions show a weaker center bias and TP fixations show
no obvious center bias at all, again as expected and
confirming previous suggestion. This showcases the
potential for HAT to make highly interpretable predic-
tions of human attention control.

Target prior. A natural question arising from this ob-
servation is whether the peripheral tokens of TA and
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Figure 3. Peripheral tokens vs foveal tokens under TP,
TA and FV settings (from left to right). The top three fig-
ures visualize the temporal change of the contribution of
peripheral and foveal memory tokens in predicting human
attention. Here the contribution is measured by the attention
weight from the last cross-attention layer of the aggregation
module in HAT. X-axis shows the token index, with 0 rep-
resenting all peripheral tokens (by summing the attention
weights of all peripheral tokens) and i > 0 being the i-th
foveal token. Y-axis indicates temporal fixation step from
first to max number of fixation steps allowed for each task.
The bottom three figures show the spatial distribution of the
attention weights of all peripheral tokens, averaged over the
temporal axis. The brighter the color, the larger is the con-
tribution.
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Figure 4. Categorical peripheral contribution map of vi-
sual search fixations. We show the contribution map of the
peripheral tokens for two categories (rows): car and bottle,
in target-present and target-absent settings (columns). We
measure the contribution of each peripheral token by the at-
tention weights from the last cross-attention layer of the ag-
gregation module in HAT, averaged over the temporal axis
of all testing data in COCO-Search18 [3]. The brighter the
color, the larger the contribution.

TP fixations encode a target prior–spatial distribution
of the possible target location. To answer this ques-
tion, we visualize the category-wise peripheral con-
tribution maps for TP and TA fixations by averaging

the attention weights (on the peripheral tokens) of the
last cross-attention layer over all testing fixations for
each target category. As shown in Fig. 4, the category-
specific peripheral contribution map does not provide
a clear evidence of TA and TP peripheral contribu-
tion map being a target prior, but we find some target-
specific pattern, e.g., the contribution is pronounced
around the bottom horizontal area for “car” and around
the vertical area for “bottle”, which may represent the
spatial prior of each category.

5.2. Failure cases analysis

Our analysis of failure cases offers insights for future
research. A scanpath prediction would be taken as a
failure case if its sequence score falls below 50% of
the human consistency of its stimulus. Under this cri-
terion, we find some common features of failure cases.
For target-present, the ambiguity of the target object
often leads to a decline in HAT performance. For in-
stance, in the first row of Fig. 5, the laptop in the first
case has a very similar color to the table and its sur-
rounding objects. In the second case, the TV is in-
distinguishable even to an individual. Both scenarios
present an ambiguous visual representation of the tar-
get, complicating the prediction of the scanpath during
visual searches. For target-absent, it is hard for HAT
to learn the perception pattern of human when the hu-
man scanpaths are very short. In free-viewing, from
the visualization in the third row of Fig. 5, HAT only
allocates a few fixations to text in the image, which
is opposite to human perception. This discrepancy is
attributed to the limitations of the image encoder and
decoder in capturing text features.

5.3. Scanpath visualization

We further visualize additional scanpaths for human
(ground truth), our HAT, Gazeformer [12], FFMs [16],
Chen et al. [2], IRL [15], and a heuristic method (tar-
get detector for visual search and saliency heuristic for
free viewing) in the TP, TA, and FV settings. Fig. 6
shows the TP scanpaths. In all examples, HAT shows
superior performance in predicting the human fixation
trajectory not only when humans correctly fixate on
the target, but also when their attention is distracted by
other visually similar objects. For example, in the last
column of Fig. 6 when the task is to find a knife, HAT
is the only model that correctly predicts the fixation on
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Figure 5. Failure cases. The first row is two failure cases for laptop and tv search, respectively. The second row is two failure
cases for sink and clock search, respectively. The third row is two failure cases for free viewing.

the metallic object (because knives are usually metal-
lic), whereas other methods either missed the target or
did not show any distractions to the metallic object.
This shows the capacity of HAT in modeling human
attention control in visual search. Fig. 7 shows that
HAT learns to leverage the context cues in predicting
target-absent fixations, e.g., when the search target is
microwave, HAT correctly predicted the fixations on
the counter-top and table, where microwaves are often
found. Similarly, HAT also generates the most human-
like scanpaths in free-viewing task (see Fig. 8), cap-
turing all important aspects of scanpaths, such as the
locations (where), the semantics (what), and the order
(when) of the fixations.

6. Implementation details

6.1. Network structure.

HAT has four modules as shown in Fig. 2 of the main
text. By default, the feature extraction module em-
ploys ResNet-50 [6] as the pixel encoder and MSDe-
formAttn [17] as the pixel decoder. Sec. 4 presents
the results with other pixel encoders, ResNet-101 and
Swin Transformer [10], and pixel decoder, FPN [9].
The number of channels of the feature maps C is set

to 256. For the foveation module, the transformer en-
coder has three layers. The transformer decoder in the
aggregation module has six layers (i.e,. L = 6). All
transformer encoder and decoder layers in HAT have
4 attention heads. The number of queries N = 18 for
visual search scanpath prediction as COCO-Search18
contains 18 target categories and N = 1 for free-
viewing scanpath prediction. Finally, the MLP in the
fixation prediction module has two linear layers with
512 hidden dimensions and a ReLU activation func-
tion.

6.2. Training settings.

Following [15, 16], we resize all images to 320×512
for computational efficiency during training and infer-
ence. We use the AdamW [11] with the learning rate
of 0.0001 and train HAT for 30 epochs with a batch
size of 32. No data augmentation is used during train-
ing. Note that we keep the pixel encoder fixed during
training and we use the COCO-pretrained weights for
panoptic segmentation from [5] as an initialization for
the pixel encoder and pixel decoder. Following [15],
we set the maximum length of each predicted scanpath
to 6 and 10 (excluding the initial fixation) for target-
present and target-absent search scanpath prediction,
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Figure 6. Target-present scanpath visualization. We show the scanpaths of seven methods (rows) for four different targets
(columns) which are bottle, stop sign, microwave and knife. The final fixation of each scanpath is highlighted in red circle.
For methods without termination prediction, i.e., IRL and detector, we visualize the first 6 fixations.

respectively. For free viewing, the maximum scanpath
length is set to 20.

6.3. Additional details on heuristic baselines

Detector: The detector network consists of a feature
pyramid network (FPN) for feature extraction (1024
channels) with a ResNet50 pretrained on ImageNet as

the backbone and two convolution layers with batch
normalization and a ReLU activation layer in between
for detection of 18 different targets. The kernel size
and hidden dimension of the first convolutional layer
is 3 and 128, respectively. The detector network pre-
dicts a 2D spatial probability map of the target from
the image input and is trained using the ground-truth
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Figure 7. Target-absent scanpath visualization. We show the scanpaths of seven methods (rows) for four different targets
(columns) which are bottle, stop sign, microwave and knife. The final fixation of each scanpath is highlighted in red circle.
For methods without termination prediction, i.e., IRL and detector, we visualize the first 6 fixations.

location of the target. Another similar baseline is Fix-
ation Heuristic. This network shares exactly the same
network architecture with the detector baseline but it is
trained with behavioral fixations in the form of spatial
fixation density map, which is generated from 10 sub-
jects on the training images.

6.4. Scanpath generation

Most methods except human consistency generate a
new spatial priority map or action map at every step,
while the predicted priority map is fixed over all steps
for the Detector, Fixation Heuristic and IVSN base-
lines. Prior works like [15] measure model perfor-
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Figure 8. Free-viewing scanpath visualization. We show the scanpaths of seven methods (rows) for four example images.
The final fixation of each scanpath is highlighted in red circle. For methods without termination prediction, i.e., IRL and
detector, we visualize the first 15 fixations.

mance based on multiple randomly sampled scan-
paths, which, however, can be unfairly bias toward
models that repeatedly sample the best (greedy) scan-
path. Therefore, in this work we directly compare
different methods using their best predictions. When
generating scanpaths, for all methods we follow [16]
and predict one scanpath for each testing image in a
greedy fashion—a fixation location is determined by

selecting the most probable fixation location in the pre-
dicted priority map. At evaluation, we compare the
predicted “greedy” scanpath against all GT scanpaths
which helps measure how well a model (at its best)
captures human scanpath consistency.



6.5. Implementation of cIG

cIG denotes the amount of information gain from the
predicted fixation map (the model is provided with all
previous fixations) over a baseline in predicting the
ground-truth fixation. Here, the baseline is a fixation
density map constructed by averaging the smoothed
density (with a Gaussian kernel of one degree of vi-
sual angle) maps of all training fixations. For target-
present and target-absent visual search settings, we use
a (target) category-wise fixation density map, follow-
ing [16]. For the heuristic models (i.e., target detector
and saliency heuristic) which apply the winner-take-all
strategy on a static fixation map to generate the scan-
path prediction, we use the same static fixation map
for all fixations in a scanpath to compute cIG, cNSS
and cAUC. To obtain the predicted fixation maps for
Chen et al.’s model [2], we use the ground-truth fixa-
tion map (Gaussian smoothed with a kernel size of 2)
as input to obtain the predicted action map for the next
fixation (i.e., the predicted fixation map). Note that all
predicted fixation maps in computing cIG, cNSS and
cAUC, are resized to 320× 512 for fair comparison.

7. A note on human consistency

For the same image, there are multiple ground-truth
scanpaths from different human subjects. As in [15,
16], for each image human consistency is computed by
averaging the similarities of every pair of human scan-
paths. A model’s performance, however, is measured
by the average similarity of the predicted “mean” scan-
path to every human scanpath. Consider scanpaths as
2D points whose similarity can be measured by Eu-
clidean distance. The average pairwise similarity be-
tween these points (human consistency) is smaller than
the average similarity of these points to their arithmetic
mean (model performance). This explains how it is
possible for a good model to exceed the human con-
sistency. Taking a triangle as analogy: the average dis-
tance of a point (predicted scanpath) within the trian-
gle to all vertices can be smaller than the average edge
length (human consistency).

8. Further discussion on applications

Models that predict top-down attention (TP/TA search
fixations), modulated by an external goal, have wide
applicability to attention-centric HCI. For example,

faster attention-based rendering that leverages the pre-
diction of a user’s attention as they play a VR/AR
game and home robots incorporating search-fixation-
prediction models will be better at inferring a user’s
need (i.e., their search target). Home robots in-
corporating search-fixation-prediction models will be
better able to infer a users’ need (i.e., their search
target) and autonomous driving systems can attend
to image input like an undistracted driving ex-
pert. Applications of FV attention prediction exist
in foveated rendering [8] and online video streaming
[13].
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