
A. Implementation Details
In this section, we first provide detailed ground removal im-
plementation, then we describe how we insert synthetic hu-
man. Next, we give details of our Bi-directional tracking
filter. After that, we describe how we select key joints. At
last, we provide our training settings.

Ground removal. Given a LIDAR point cloud, we
employ RANSAC [2] with additional refinement and con-
straints to segment the ground point cloud. First, we
partition the detection range of the point cloud into 2-
dimensional patches, e.g. 5m × 5m. Then for each patch,
we voxelize the point cloud within this patch, then run
RANSAC with a threshold of 0.06 in the lowest voxels
(force RANSAC to choose points randomly only in these
voxels) to obtain each patch’s ground point cloud. The
voxel size we use here is [0.1, 0.1, 0.05]. Specifically, we
add following constrains on RANSAC:
• The fitted plane is required to exhibit an angle with the

xy-plane that is less than 25 degrees.
• The fitted plane should contain at least 50 points.
• The quantity of points below the fitted plane should be

less than 20% of the total points on the plane.
• The mean distance of points below the fitted plane from

the plane itself is less than 0.15 meters.
If all these conditions are satisfied, we rerun RANSAC with
these conditions 6 times more and combine the result as the
final ground point cloud in this patch. Finally, after we ob-
tain all patches’ ground point cloud, we combine them as
the scene’s ground point cloud.

Synthetic human insertion. We first choose a ran-
dom sequence in the dataset, then choose a random frame
within this sequence. Leveraging the segmented ground
point cloud, we choose a random distance in the obtained
ground point cloud for this frame. Then randomly choose
one point from all the points that satisfy this distance as the
initial insertion location. In detail, we first set the transla-
tion of SMPL [3] as the chosen point. Next, we convert
pose and shape parameters of a human to vertices, then we
move the lowest vertex to the chosen point. After that, we
convert the vertices to point cloud according to [1] and fit
bounding box. Range image bridged point cloud generation
(Sec 3.1) then generates a synthetic human that adhere to
the view-dependent property of LiDAR point cloud. To fil-
ter out invalid insertion, we conduct following judgements:
• The occlusion rate of inserted synthetic human within the

scene is less than 70%.
• The maximum Intersection over Union (IoU) between the

bounding boxes of the inserted individual and those pre-
viously inserted should be less than 0.35.

• The occlusion rate of individuals previously inserted is
less than 70%.

If all these judgements are satisfied, this insertion is valid,
and we repeat the above insertion process until we achieve

the wanted number of insertion for this frame. Otherwise,
we consider this insertion as a failure, then we choose an-
other distance and rerun above insertion process with the
chosen distance. If we have 10 failures, the insertion for
this frame is done.

Bi-directional tracking filter. We utilize
AB3DMOT [4] as our tracker. For predicted bounding
boxes with confidence score less than 0.5, we discard them
before tracking. If we have unmatched tracking results, we
discard them immediately instead of keeping them alive for
a while. Tracklets with length less than 3 are discarded ,
while those with length longer than 3 but moving distance
less than 2m are discarded as well. This is because Hu-
CenLife and STCrowd dataset are both collected by located
LiDAR (no traversals).

Key joints selection. We select six key joints repre-
senting the arms, legs, trunk, and head. Since the realistic
occlusion in our synthetic data may make some body parts
invisible, we filter out invisible parts based on the num-
ber of points within that part away from the closest key
joint. Specifically, for each key joint, if there exists less
than 10 points within the radius (0.4m, 0.22m, 0.3m, 0.15m
for trunk, legs, head, arms, respectively), we filter out these
parts.

Training setting. Our model is trained stage by stage.
Our learning rate is 0.001 for stage 1 training, and 0.0001
for stage 2, stage 3, and finetune. We use AdamW as our
optimizer. We train our model on 8 A40 GPUs for 12 hours
each round. For fair comparison, we conduct no data aug-
mentations on our model and baselines.

B. Data Diversity

Figure 1. Visualization of real data and synthetic data.

We improve the diversities of clothes and attachments by
synthesizing similar noise around the body in data aug-
mentation, as Fig. 1. In fact, due to the sparsity of LiDAR
points, the noise caused by clothes is not obvious. To show
the diversity of action, we Visualization of few synthetic
human actions in Fig. 2.

Figure 2. Visualization of few synthetic human actions.



C. More result visualization
Fine-Grained Perception Enhancement is designed to ease
the occlusion problem. E7 in ablation study has shown its
effectiveness for the whole data with self- or external oc-
clusions. We show the improvement from E6 to E7 for
occluded instances with Fig. 3 on HuCenLife test set.

Figure 3. Visualization of few synthetic human actions.

References
[1] Peishan Cong, Xinge Zhu, and Yuexin Ma. Input-output bal-

anced framework for long-tailed lidar semantic segmentation.
In 2021 IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6. IEEE, 2021. 1

[2] Martin A Fischler and Robert C Bolles. Random sample con-
sensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981. 1

[3] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. Smpl: A skinned multi-
person linear model. Seminal Graphics Papers: Pushing the
Boundaries, Volume 2, 2015. 1

[4] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.
3d multi-object tracking: A baseline and new evaluation met-
rics. In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 10359–10366. IEEE,
2020. 1


	. Implementation Details
	. Data Diversity
	. More result visualization

