Mosaic-SDF for 3D Generative Models

Supplementary Material

A. Generative model evaluation

In this section we provide additional information on the ex-
periments described in Section 4.3.

A.l. Metrics

We measure distances between shape distributions follow-
ing previous works [27, 51, 52, 54]. We quantify differences
between a set of reference shapes ;. and a set of generated
shapes S;. We describe a shape) € S, as a point cloud
of size N sampled from a reference mesh using the farthest
point sampling [9]. Similarly, X € S, is a point cloud sam-
pled from a generated surface mesh, extracted as the O-level
set of the SDF (or 0.5 level set for occupancy function) us-
ing the Marching Cubes algorithm [26].

Geometric shape similarity. The Chamfer Distance
(CD) and the Earth Mover Distance (EMD) measure sim-
ilarity between two point clouds:

CD(X,)Y) = meHw yHﬁmellw—yIIz (18)
mGX
EMD(X,)) = mln anf Yl (19
weX

where ~ is the bijection between the point clouds, and
N = 5K. In the following, we denote by D(X,Y) dis-
tance measure between two point clouds, referring to either
CD or EMD.

Geometrical distances between sets of shapes. The CD
and EMD distances between point clouds are used to define
the following distances between sets of shapes S, and S,:
Coverage (COV) quantifying the diversity of S, by count-
ing the number of reference shapes that are matched to at
least one generated shape; Minimum Matching Distance
(MMD) measuring the fidelity of the generated shapes to the
reference set; and 1-Nearest Neighbor Accuracy (1-NNA)
describing the distributional similarity between the gener-
ated shapes and the reference set, quantifying both quality
and diversity. Next we provide the mathematical definitions
of these distance measures:

[{argminy,cg D(X,V)|X € Sy}
|5y

COV(S,, 8,)= (20)

MMD(S,, S,) Z min D X)) Q1)

ISI

> I[Ny € Sg]+ >, T[Ny € 5]
XeS, Yes,

S| +15]

1-NNA(S,, S,)= (22)

where I(-) is the indicator function and Ny is the nearest
neighbor of X in the set S, U .S, — {X'}.

Perceptual distances between sets of shapes. Along-
side the geometric distance-based metrics, we adopt the 3D
analogs of the Fréchet Inception Distance (FID) and Ker-
nel Inception Distance (KID) suggested in previous works
[35, 54]. In the 3D case, FID/KID are computed on the fea-
ture sets computed by pushing N = 2046 point samples
into a pre-trained PointNet++ network [39]. We denote by
R and G the sets of the extracted features from the refer-
ence shapes S, and the generated shaped S, respectively.
We can further define (., ;) as the the mean and covari-
ance statistics computed from the feature set R, and sim-
ilarly (pg,Xg) for G. As in [54], the Fréchet PointNet++
Distance (FPD) and Kernel PointNet++ Distance (KPD) are
defined by

FPD(Sy, 1) = lag—11r |HTx (4 + £, —2(2,Z)F) (23)

2
1
FPD(S,, ;) = <|R| > max K(x, y)) 24)

where K (-,) is a polynomial kernel function distance.

A.2. Computation of distance metrics

Following previous works we compute the geometric dis-
tances, i.e., COV, MMD and 1-NNA, with the reference set
of shapes, .S;., chosen to be the test split; and we generate an
equal number of shape from our generated set S,. The per-
class test split given by [53] consists of 5% of the shapes
from each class, with varying numbers of shapes in each
class. We used the following released codes to compute
CD' and EMD?, and computed the distance metrics from
the official code of [52]°.

For computing the perceptual distances, FPD and KPD,
we follow [54] and use 1K generated shapes Sy, and as the
reference set S, we take 1K randomly sampled shapes from
the train split. We utilize a pre-trained PointNet++ model
from [50] to extract the features R and G.

To run the baselines, we use the official implementation
of each method together with the pre-trained model they
supply: The per-class unconditional models from Neural
Wavelet*, and the class conditioned model from 3DILG’
and 3DShape2VecSet®.

Uhttps://github.com/Thibault GROUEIX/ChamferDistancePytorch
Zhttps://github.com/daerduoCarey/PyTorchEMD
3https://github.com/nv-tlabs/LION/tree/main
“https://github.com/edward1997104/Wavelet-Generation
Shttps://github.com/1zb/3DILG
Shttps://github.com/1zb/3DShape2 VecSet

B. Additional implementation details

In this section we provide additional implementation details
missing from the main paper.

Computing M-SDF representation. As described in
Section 3.2 and algorithm 1, the computation of the M-SDF
representation for a given shape S consists of two stages:
initialization and fine-tuning. For both stages we require a
good estimation of the ground truth SDF Fs, and for that
we use the open-source library of Kaolin-Wisp’. To ob-
tain s (equation 7), that serves as the initial scale, we sam-
ple the surface densely and search for the minimal distance
between the dense sampling set and the initialized volume
centers. For the fine-tuning stage we sample for supervi-
sion a set of 300K points on the surface, and 200K points
near the surface perturbed with Gaussian noise with vari-
ance 0.01. In each fine-tuning step we sample a random
batch of 16K points, used to compute the loss in equation 8.
We run the fine-tuning for 1K steps with ADAM optimizer
[17] and learning rate of 1le—4.

M-SDF representation configuration. The number of
local grids is chosen to be n = 1024 as this is the common
size of the generated point cloud used in previous point-
based diffusion models [35]. The grid resolution was set to
k = 7, as it is the highest dimension that our transformer
architecture can be consistent with.

Other representations configurations. In section 4.2 we
compare M-SDF representation to existing popular SDF
representations used in 3D generative models. For the ex-
periment results presented in Figure 5 we follow the config-
urations commonly used with these representations in pre-
vious works. Specifically, for INR we had 8 hidden layers
and changed the width of the hidden layers appropriately to
the given parameter budget. As for the 3D grid and triplane
we only adjusted the grid’s resolution, where the triplane
planes have fixed features dimension of 32.

Conditioning tokens. To complete the architecture de-
scription in Section 4.1, we add details regarding the condi-
tioning mechanism c. For the class conditioning generation
4.3 we use a learned per-class embedding where each class
is described using a latent vector of size 128. For a selected
class latent we first apply a linear layer projecting it to the
transformer dimension, i.e., 1024 before feeding it to the
transformer. For the text conditioning generation 4.4, we
utilize a pre-trained text model [40] as our textual embed-
ding, result in a token embedding with feature size of 768
and maximum sequence length of 32. We feed these addi-
tional 32 tokens to the transformer, after applying a linear
layer projecting to 1024.

Thttps://github.com/NVIDIAGameWorks/kaolin-wisp

Generation timing. NFE Time 1-NNA (1,%)
In Table 3 we re- (sec) €D EMD

. . Midpoint-25 50.00 6.13 59.16 67.57
port the time (in sec- Midpoint-50 10000 12.19 61.88 69.06
OndS) and Number Of DOPRI 13846 1697 57.67 64.85
Function Evaluations
(NFE) for generating
one sample accord-
ing to algorithm 3, using different ODE solvers: Midpoint
rule, and Dormand-Prince method (DOPRI) [6]. We fur-
ther report the effect of the different solvers on the qual-
ity of the generated shapes using the 1-NNA metric. For
this experiment we evaluated our class-conditioning model,
on 300 generated samples from the "airplane’ class. Please
note that in all of the paper’s experiments and evaluations
we used the DOPRI as our ODE solver, however as Table
3 indicates using the Midpoint method, with either 25 or 50
steps, results in faster generation and only a mild degrada-
tion in quality. Using recent advances in fast sampling of
flow models is expected to reduce these times further.

Table 3. Generation complexity and
quality for different ODE solvers.

C. Additional representation evaluations

Comparison to Instant-NGP represen- -
tation. To complement with the M- |ygp®
SDF representation evaluation shown in 12.2M_ - \
Figure 3, we further examine the Instant- ~ & i S
NGP (INGP) [33] representation power INGP '&\
for a fixed parameter budget. Please note ?.551(& el
that the INGP representation has a more
complicated structure, as it consists of a MSDF " §
. . 355K
triplet: coarse level grid; ordered set of %
hash tables; and weights of a small MLP. \ g
These lead to a representation incorpo- o~
rating different tensors with various symmetries, which
might be possible to work with but was not done in pre-
vious 3D generative models and is non-trivial. As the in-
set shows, INGP best performance is achieved when using
the INGP’s original configuration (12.2M params), which
is considerably larger than MSDF (355K params) that still
leads to better approximation of the guitar.

The manifold assumption Man-made
3D shapes are typically not manifolds,
however practically all shapes can be de-
scribed as manifolds (e.g., with small
width). The manifold assumption has its
advantages in defining implicit represen-
tations and post-processing (extracting a
mesh) and therefore widely common as-
sumption in other 3D generative models.
In the inset we also add a visualization of
a model with thin structures, after its pro-
cessing to be watertight (WT), and the MSDF representa-
tion result.

D. Additional results

Class conditioning generation. In Figure 8 we show
additional qualitative comparison of the class-conditioned
generation compared to the relevant baselines. On top we
show the common classes across all baselines. Below the
dashed line we further present other classes in a comparison
to 3DILG[53] and S2VS[54], which trained a class condi-
tioning model similarly to us. Note that M-SDF generation
are overall sharper with more details, while baselines tend
to over smooth.

Guidance scale ablation. We perform an ablation study
regarding the guidance scale w we use in the sampling al-
gorithm 3. Figure 9 depicts the generation samples using
different guidance scales, with both our class-conditioning
model (top) and the text-conditioning model (bottom). We
further provide quantitative comparison in Table 4, when
sampling our class conditioning model using various guid-
ing scales. Here, we perform similar evaluation to the class
conditioning evaluation in Table 1, and report metrics for
the 5 largest classes in the ShapeNetCore-V2 (3D Ware-
house) [4] dataset. As somewhat expected, the w = 0 per-
forms best when comparing shape distributions, however
qualitatively, taking a higher w tends to result in a more
”common” or "average” shape. In the main paper we there-
fore opted w = 0 for the class-conditional shape generation,
and w = 5 for the text-conditioned shape generation.

S2vs

Ours

Figure 8. Class conditioned generation of 3D shapes compared to
relevant baselines.

FPD (}) KPD(]) COV (1.%) MMD (}) 1-NNA (1.%)

CD EMD CD EMD CD EMD

airplane

Ours w =0 0.37 0.37 50.99 48.02 346 371 57.67 64.85
Ours w =1 0.71 0.75 4406 4059 403 392 6535 7475
Ours w =2 0.80 0.79 3713 41.09 4.65 3.84 7054 7327
Ours w =5 1.10 L.19 36.63 3564 490 414 7450 7822

Ours w = 10 1.97 2.90 2772 2772 6.25 454 86.14 8193
car

Ours w =0 0.45 0.47 42.86 45.14 275 278 6571 70.00

Ours w =1 0.85 1.00 32.00 37.71 3.14 287 7714 7229
Ours w =2 0.96 1.15 29.71 3543 324 285 75.14 7229
Ours w =75 1.08 1.28 2857 3486 341 3.02 80.86 74.86

Ours w =10 1.39 2.11 24.00 28.57 3.53 3.18 85.71 83.71
chair

Ours w =0 0.51 0.20 4586 5148 1608 9.17 5592 5547
Ours w =1 0.78 0.64 4408 4260 1870 1039 56.07 64.79
Ours w =2 0.94 0.85 3846 42.60 20.16 1059 6627 70.56
Ours w =5 1.34 1.42 30.77 3343 2243 11.13 7426 74.26
Ours w =10 1.67 1.92 31.07 3047 2251 11.62 76.18 77.96

sofa
Ours w =0 0.64 0.65 4494 5063 11.21

721 5949 5823

Ours w =1 1.31 1.64 36.08 3671 1531 8.08 69.30 63.92
Ours w = 2 1.68 2.25 27.85 3481 1750 844 80.70 7278
Ours w =75 2.51 4.02 22,15 31.65 2003 889 87.66 79.43

Ours w =10 3.48 6.57 17.72 2532 21.07 9.86 89.56 80.70
table

Ours w =0 0.49 0.18 5226 5558 13.10 7.60 52.14 51.54
Ours w =1 1.26 1.43 39.90 4347 1516 847 6520 63.06
Ours w = 2 1.97 2.55 3230 3112 18.63 9.81 7340 7399
Ours w =15 3.08 4.55 17.81 18.05 36.52 1499 89.31 88.95
Ours w = 10 4.34 8.34 13.54 1425 5402 19.28 9572 9442

Table 4. Ablation study on the Classifier Free Guidance (CFG) scale used
for sampling w. KPD and MMD-CD multiplied by 103, MMD-EMD by
102.

\ ¥

w=0 w=2 w = 5 w=10
Figure 9. Ablation of guidance scale w use in sampling our class-
conditioned model (top) and our text-conditioned model (bottom).

w=1

Text-to-3D generation. In Figure 10 we show additional
generated shapes from our text-conditioned model.

A traffic cone A baby alien Earphones A flying butterfly An engagement ring

7

7

A deer A wooden barrel An alien wearing A magical ,’
N\ A santa hat (" sword |

|
I

|
\
\
|
- i

A cat toy

A snowy mountain A goldfish A big pumpkin A stool

/

A power drill An old rifle . s Arectangle .

sofa -

Two cupcakes Three cupcakes Four cupcakes A tasty doughnut An apple

d -
A bucket hat A magical crown A sandwich Abanana A cheeseburger
AN
{ [\ i ‘ \ g‘\ 4
\’//
A big lizard Alonglizard A dinosaur A catfish
’ . ~
S ™~ .
" 4
A cactus A baby A cat wearing
A screwdriver Anoldglove inapot 4 penguin boots

Figure 10. Additional text-to-3D samples from a Flow Matching
model trained on M-SDF representations of 600K pairs of shapes
and text.

	. Introduction
	. Related work
	. Method
	. Mosaic-SDF Shape Representation
	. Computing M-SDF for Shape Dataset
	. Mosaic-SDF Generation with Flow Matching

	. Experiments
	. Implementation details
	. Representation evaluation
	. Class conditional generation
	. Text-to-3D generation

	. Summary and Future Work
	. Generative model evaluation
	. Metrics
	. Computation of distance metrics

	. Additional implementation details
	. Additional representation evaluations
	. Additional results

