
Mosaic-SDF for 3D Generative Models

Supplementary Material

A. Generative model evaluation
In this section we provide additional information on the ex-
periments described in Section 4.3.

A.1. Metrics
We measure distances between shape distributions follow-
ing previous works [27, 51, 52, 54]. We quantify differences
between a set of reference shapes Sr and a set of generated
shapes Sg . We describe a shape Y ∈ Sr as a point cloud
of size N sampled from a reference mesh using the farthest
point sampling [9]. Similarly, X ∈ Sg is a point cloud sam-
pled from a generated surface mesh, extracted as the 0-level
set of the SDF (or 0.5 level set for occupancy function) us-
ing the Marching Cubes algorithm [26].

Geometric shape similarity. The Chamfer Distance
(CD) and the Earth Mover Distance (EMD) measure sim-
ilarity between two point clouds:

CD(X ,Y) =
∑
x∈X

min
y∈Y
∥x− y∥22+

∑
y∈Y

min
x∈X
∥x− y∥22 (18)

EMD(X ,Y) = min
γ:X→Y

∑
x∈X
∥x− γ(y)∥2 (19)

where γ is the bijection between the point clouds, and
N = 5K. In the following, we denote by D(X ,Y) dis-
tance measure between two point clouds, referring to either
CD or EMD.

Geometrical distances between sets of shapes. The CD
and EMD distances between point clouds are used to define
the following distances between sets of shapes Sr and Sg:
Coverage (COV) quantifying the diversity of Sg by count-
ing the number of reference shapes that are matched to at
least one generated shape; Minimum Matching Distance
(MMD) measuring the fidelity of the generated shapes to the
reference set; and 1-Nearest Neighbor Accuracy (1-NNA)
describing the distributional similarity between the gener-
ated shapes and the reference set, quantifying both quality
and diversity. Next we provide the mathematical definitions
of these distance measures:

COV(Sg, Sr)=
|
{
argminY∈Sr

D(X ,Y)|X ∈ Sg

}
|

|Sr|
(20)

MMD(Sg, Sr) =
1

|Sr|
∑
Y∈Sr

min
X∈Sg

D(X ,Y) (21)

1-NNA(Sg, Sr)=

∑
X∈Sg

I [NX ∈ Sg]+
∑

Y∈Sr

I [NY ∈ Sr]

|Sr|+ |Sg|
(22)

where I(·) is the indicator function and NX is the nearest
neighbor of X in the set Sr ∪ Sg − {X}.

Perceptual distances between sets of shapes. Along-
side the geometric distance-based metrics, we adopt the 3D
analogs of the Fréchet Inception Distance (FID) and Ker-
nel Inception Distance (KID) suggested in previous works
[35, 54]. In the 3D case, FID/KID are computed on the fea-
ture sets computed by pushing N = 2046 point samples
into a pre-trained PointNet++ network [39]. We denote by
R and G the sets of the extracted features from the refer-
ence shapes Sr and the generated shaped Sg , respectively.
We can further define (µr,Σr) as the the mean and covari-
ance statistics computed from the feature set R, and sim-
ilarly (µg,Σg) for G. As in [54], the Fréchet PointNet++
Distance (FPD) and Kernel PointNet++ Distance (KPD) are
defined by

FPD(Sg, Sr)=∥µg−µr∥+Tr
(
Σg +Σr−2(ΣgΣr)

1
2

)
(23)

FPD(Sg, Sr) =

(
1

|R|
∑
x∈R

max
y∈G

K(x,y)

)2

(24)

where K(·, ·) is a polynomial kernel function distance.

A.2. Computation of distance metrics
Following previous works we compute the geometric dis-
tances, i.e., COV, MMD and 1-NNA, with the reference set
of shapes, Sr, chosen to be the test split; and we generate an
equal number of shape from our generated set Sg . The per-
class test split given by [53] consists of 5% of the shapes
from each class, with varying numbers of shapes in each
class. We used the following released codes to compute
CD1 and EMD2, and computed the distance metrics from
the official code of [52]3.

For computing the perceptual distances, FPD and KPD,
we follow [54] and use 1K generated shapes Sg , and as the
reference set Sr we take 1K randomly sampled shapes from
the train split. We utilize a pre-trained PointNet++ model
from [50] to extract the featuresR and G.

To run the baselines, we use the official implementation
of each method together with the pre-trained model they
supply: The per-class unconditional models from Neural
Wavelet4, and the class conditioned model from 3DILG5

and 3DShape2VecSet6.
1https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
2https://github.com/daerduoCarey/PyTorchEMD
3https://github.com/nv-tlabs/LION/tree/main
4https://github.com/edward1997104/Wavelet-Generation
5https://github.com/1zb/3DILG
6https://github.com/1zb/3DShape2VecSet

B. Additional implementation details
In this section we provide additional implementation details
missing from the main paper.

Computing M-SDF representation. As described in
Section 3.2 and algorithm 1, the computation of the M-SDF
representation for a given shape S consists of two stages:
initialization and fine-tuning. For both stages we require a
good estimation of the ground truth SDF FS , and for that
we use the open-source library of Kaolin-Wisp7. To ob-
tain s (equation 7), that serves as the initial scale, we sam-
ple the surface densely and search for the minimal distance
between the dense sampling set and the initialized volume
centers. For the fine-tuning stage we sample for supervi-
sion a set of 300K points on the surface, and 200K points
near the surface perturbed with Gaussian noise with vari-
ance 0.01. In each fine-tuning step we sample a random
batch of 16K points, used to compute the loss in equation 8.
We run the fine-tuning for 1K steps with ADAM optimizer
[17] and learning rate of 1e−4.

M-SDF representation configuration. The number of
local grids is chosen to be n = 1024 as this is the common
size of the generated point cloud used in previous point-
based diffusion models [35]. The grid resolution was set to
k = 7, as it is the highest dimension that our transformer
architecture can be consistent with.

Other representations configurations. In section 4.2 we
compare M-SDF representation to existing popular SDF
representations used in 3D generative models. For the ex-
periment results presented in Figure 5 we follow the config-
urations commonly used with these representations in pre-
vious works. Specifically, for INR we had 8 hidden layers
and changed the width of the hidden layers appropriately to
the given parameter budget. As for the 3D grid and triplane
we only adjusted the grid’s resolution, where the triplane
planes have fixed features dimension of 32.

Conditioning tokens. To complete the architecture de-
scription in Section 4.1, we add details regarding the condi-
tioning mechanism c. For the class conditioning generation
4.3 we use a learned per-class embedding where each class
is described using a latent vector of size 128. For a selected
class latent we first apply a linear layer projecting it to the
transformer dimension, i.e., 1024 before feeding it to the
transformer. For the text conditioning generation 4.4, we
utilize a pre-trained text model [40] as our textual embed-
ding, result in a token embedding with feature size of 768
and maximum sequence length of 32. We feed these addi-
tional 32 tokens to the transformer, after applying a linear
layer projecting to 1024.

7https://github.com/NVIDIAGameWorks/kaolin-wisp

NFE Time 1-NNA (↓,%)
(sec.) CD EMD

Midpoint-25 50.00 6.13 59.16 67.57
Midpoint-50 100.00 12.19 61.88 69.06
DOPRI 138.46 16.97 57.67 64.85

Table 3. Generation complexity and
quality for different ODE solvers.

Generation timing.
In Table 3 we re-
port the time (in sec-
onds) and Number of
Function Evaluations
(NFE) for generating
one sample accord-
ing to algorithm 3, using different ODE solvers: Midpoint
rule, and Dormand–Prince method (DOPRI) [6]. We fur-
ther report the effect of the different solvers on the qual-
ity of the generated shapes using the 1-NNA metric. For
this experiment we evaluated our class-conditioning model,
on 300 generated samples from the ’airplane’ class. Please
note that in all of the paper’s experiments and evaluations
we used the DOPRI as our ODE solver, however as Table
3 indicates using the Midpoint method, with either 25 or 50
steps, results in faster generation and only a mild degrada-
tion in quality. Using recent advances in fast sampling of
flow models is expected to reduce these times further.

C. Additional representation evaluations

Comparison to Instant-NGP represen-
tation. To complement with the M-
SDF representation evaluation shown in
Figure 3, we further examine the Instant-
NGP (INGP) [33] representation power
for a fixed parameter budget. Please note
that the INGP representation has a more
complicated structure, as it consists of a
triplet: coarse level grid; ordered set of
hash tables; and weights of a small MLP.
These lead to a representation incorpo-
rating different tensors with various symmetries, which
might be possible to work with but was not done in pre-
vious 3D generative models and is non-trivial. As the in-
set shows, INGP best performance is achieved when using
the INGP’s original configuration (12.2M params), which
is considerably larger than MSDF (355K params) that still
leads to better approximation of the guitar.

The manifold assumption Man-made
3D shapes are typically not manifolds,
however practically all shapes can be de-
scribed as manifolds (e.g., with small
width). The manifold assumption has its
advantages in defining implicit represen-
tations and post-processing (extracting a
mesh) and therefore widely common as-
sumption in other 3D generative models.
In the inset we also add a visualization of
a model with thin structures, after its pro-
cessing to be watertight (WT), and the MSDF representa-
tion result.

D. Additional results
Class conditioning generation. In Figure 8 we show
additional qualitative comparison of the class-conditioned
generation compared to the relevant baselines. On top we
show the common classes across all baselines. Below the
dashed line we further present other classes in a comparison
to 3DILG[53] and S2VS[54], which trained a class condi-
tioning model similarly to us. Note that M-SDF generation
are overall sharper with more details, while baselines tend
to over smooth.

Guidance scale ablation. We perform an ablation study
regarding the guidance scale ω we use in the sampling al-
gorithm 3. Figure 9 depicts the generation samples using
different guidance scales, with both our class-conditioning
model (top) and the text-conditioning model (bottom). We
further provide quantitative comparison in Table 4, when
sampling our class conditioning model using various guid-
ing scales. Here, we perform similar evaluation to the class
conditioning evaluation in Table 1, and report metrics for
the 5 largest classes in the ShapeNetCore-V2 (3D Ware-
house) [4] dataset. As somewhat expected, the ω = 0 per-
forms best when comparing shape distributions, however
qualitatively, taking a higher ω tends to result in a more
”common” or ”average” shape. In the main paper we there-
fore opted ω = 0 for the class-conditional shape generation,
and ω = 5 for the text-conditioned shape generation.

3D
IL

G
N

W
S2

V
S

O
ur

s
3D

IL
G

S2
V

S
O

ur
s

Figure 8. Class conditioned generation of 3D shapes compared to
relevant baselines.

FPD (↓) KPD (↓) COV (↑,%) MMD (↓) 1-NNA (↓,%)
CD EMD CD EMD CD EMD

airplane

Ours ω = 0 0.37 0.37 50.99 48.02 3.46 3.71 57.67 64.85
Ours ω = 1 0.71 0.75 44.06 40.59 4.03 3.92 65.35 74.75
Ours ω = 2 0.80 0.79 37.13 41.09 4.65 3.84 70.54 73.27
Ours ω = 5 1.10 1.19 36.63 35.64 4.90 4.14 74.50 78.22
Ours ω = 10 1.97 2.90 27.72 27.72 6.25 4.54 86.14 81.93
car

Ours ω = 0 0.45 0.47 42.86 45.14 2.75 2.78 65.71 70.00
Ours ω = 1 0.85 1.00 32.00 37.71 3.14 2.87 77.14 72.29
Ours ω = 2 0.96 1.15 29.71 35.43 3.24 2.85 75.14 72.29
Ours ω = 5 1.08 1.28 28.57 34.86 3.41 3.02 80.86 74.86
Ours ω = 10 1.39 2.11 24.00 28.57 3.53 3.18 85.71 83.71
chair

Ours ω = 0 0.51 0.20 45.86 51.48 16.08 9.17 55.92 55.47
Ours ω = 1 0.78 0.64 44.08 42.60 18.70 10.39 56.07 64.79
Ours ω = 2 0.94 0.85 38.46 42.60 20.16 10.59 66.27 70.56
Ours ω = 5 1.34 1.42 30.77 33.43 22.43 11.13 74.26 74.26
Ours ω = 10 1.67 1.92 31.07 30.47 22.51 11.62 76.18 77.96
sofa

Ours ω = 0 0.64 0.65 44.94 50.63 11.21 7.21 59.49 58.23
Ours ω = 1 1.31 1.64 36.08 36.71 15.31 8.08 69.30 63.92
Ours ω = 2 1.68 2.25 27.85 34.81 17.50 8.44 80.70 72.78
Ours ω = 5 2.51 4.02 22.15 31.65 20.03 8.89 87.66 79.43
Ours ω = 10 3.48 6.57 17.72 25.32 21.07 9.86 89.56 80.70
table

Ours ω = 0 0.49 0.18 52.26 55.58 13.10 7.60 52.14 51.54
Ours ω = 1 1.26 1.43 39.90 43.47 15.16 8.47 65.20 63.06
Ours ω = 2 1.97 2.55 32.30 31.12 18.63 9.81 73.40 73.99
Ours ω = 5 3.08 4.55 17.81 18.05 36.52 14.99 89.31 88.95
Ours ω = 10 4.34 8.34 13.54 14.25 54.02 19.28 95.72 94.42

Table 4. Ablation study on the Classifier Free Guidance (CFG) scale used
for sampling ω. KPD and MMD-CD multiplied by 103, MMD-EMD by
102.

”Ferris wheel”

”A teddy bear”

”A beautiful earring with diamonds”

ω = 0 ω = 1 ω = 2 ω = 5 ω = 10
Figure 9. Ablation of guidance scale ω use in sampling our class-
conditioned model (top) and our text-conditioned model (bottom).

Text-to-3D generation. In Figure 10 we show additional
generated shapes from our text-conditioned model.

A traffic cone A baby alien Earphones A flying butterfly An engagement ring

A gun A rectangle

sofa

A cat toy A snowy mountain A goldfish A big pumpkin A stool

A tasty doughnut An appleTwo cupcakes Three cupcakes Four cupcakes

A sandwichA bucket hat A magical crown A banana A cheeseburger

A deer A wooden barrel An alien wearing

A santa hat

A magical

sword

A humanoid robot

A big lizard A long lizard A catfish A birdA dinosaur

A cat wearing

 bootsA screwdriver

A cactus

in a pot

A baby

penguinAn old glove

An old rifleA power drill

Figure 10. Additional text-to-3D samples from a Flow Matching
model trained on M-SDF representations of 600K pairs of shapes
and text.

	. Introduction
	. Related work
	. Method
	. Mosaic-SDF Shape Representation
	. Computing M-SDF for Shape Dataset
	. Mosaic-SDF Generation with Flow Matching

	. Experiments
	. Implementation details
	. Representation evaluation
	. Class conditional generation
	. Text-to-3D generation

	. Summary and Future Work
	. Generative model evaluation
	. Metrics
	. Computation of distance metrics

	. Additional implementation details
	. Additional representation evaluations
	. Additional results

