CAM Back Again: Large Kernel CNNs from a Weakly Supervised Object
Localization Perspective

Supplementary Material

8. Training Configurations

In this study, models pre-trained on the ImageNet1K dataset
are fine-tuned for the CUB-200-2011 dataset. 12 fine-tuned
models are trained from 6 pre-trained models in RepLKNet,
14 fine-tuned models are trained from 7 pre-trained models
in ConvNeXt, and 10 fine-tuned models are trained from
5 pre-trained models in SLaK. As a preprocessing step for
the CUB-200-2011 dataset for training, we resize images to
square size of 512 x 512 and then apply center cropping at
a ratio of 0.875 to obtain 448 x 448 images.

We first present the details of RepLKNet and Con-
vNeXt. For RepLKNet fine-tuning, we use the follow-
ing 6 pre-trained models provided by [13]; 31B1K224,
31B1K384, 31B22K224, 31B22K384, 311L.22K384, XL.
For ConvNeXt fine-tuning, we use the following 7
pre-trained models provided by PyTorch Image Models
(timm) library; convnext-tiny, convnext-small, convnext-
base, convnext-base-in22ft1k, convnext-base-384-in22ft1k,
convnext-large, convnext-large-in22ftlk. With 8 GPUs,
NVIDIA Quadro RTX 8000, we train 400 epochs with a
batch size of 16 per GPU. The learning rate is 10~ for the
FC layer and 10~° for the rest. The input resolution is set
to the resolution of the pre-trained model, and other settings
follow the fine-tuning settings of [13]. With or without data
augmentation in fine tuning, two fine-tuned models are ob-
tained from one pre-trained model.

Next, we present the details of SLaK. The pre-trained
model uses SLaK-T (K=31x31), SLaK-T (K=51x51),
SLaK-T (K=61x61), SLaK-S (K=51x51), SLaK-B
(K=51x%51) provided by [23] (K is kernel size). They are
all trained at 224 x 224 resolution, but the difference in
whether the fine-tuning pixel size setting is 224 x 224 or
384 x 384 results in two fine-tuned models from a single
pre-trained model. With 8 GPUs, NVIDIA Quadro RTX
8000, we train 400 epochs with a batch size of 16 per GPU.
The drop-path is set to 0.1, 0.4, and 0.5 for tiny, small, and
base, respectively, and update-frequency is set to 2000, 10,
and 10, according to the recommendations of [23]. Other
settings follow the fine-tuning settings of [23]. These mod-
els follow the training protocol for classification and are
not optimized for WSOL (e.g., we do not evaluate WSOL
scores at each epoch). And our high-score, the 100-epoch
RepLKNet31B1K384 model’s 90.99%MaxBoxAcc in the
CUB-200-2011 dataset, actually reports the best score of
the checkpoint models saved every 50 epochs.
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Figure 13. WSOL scores (MaxBoxAccV2) for the CUB-200-
2011 dataset on the left and the ImageNet1K dataset on the right.
Green arrows connect models that differ only in training pixel size
settings, and red arrows connect models that differ only in pre-
training settings. * denotes models that introduced the same data
augmentation strategy as the pre-training in fine tuning.
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Figure 14. Graph shows the relationship between WSOL score
(MaxBoxAcc2) and ERF size. Here, ERF size is measured by the
Area Under the Curve (AUC) of Fig. 10 (a).



9. WSOL Evaluation Details

Our WSOL evaluation methodology is largely based on
the [9]. For the CUB-200-2011 dataset, we use 5994 im-
ages (train-weaksup) for training (fine-tuning) and 5774
images (test) for testing, as well as 1000 images (train-
fullsup) for threshold search. There is a problem with the
train-fullsup label information provided in the ImageNet1K
(ILSVRC2012) dataset [2]. Therefore, threshold search and
testing will be performed by a test set of 50,000 images.
Apart from MaxBoxAcc, which is primarily reported in
this paper, here we present the results of MaxBoxAccV2
(Figs. 13 and 14). Checking the direction of the arrows, we
can see the same trend as in the MaxBoxAcc graph Fig. 13.

10. Analysis on ERF and Shape Bias

The latest research [34] argues that Vision Transformers are
more human-like in that they tend to make predictions based
on the overall shape of objects, whereas CNN is more likely
to be based on local texture. In contrast, [13] show that
RepLKNet has a higher shape bias than Swin Transformer
and small kernel CNNs. Furthermore, from the perspective
of comparison with the Swin Transformer, they argue for
the possibility that the strength of the shape bias is closely
related to ERFs. Therefore, we performed similar exper-
iments on untested RepLKNet and other latest CNNs by
[13] using the toolbox [1] (Fig. 16). Fig. 10 (a) shows that
ERF is larger for ConvNeXt, SLaK, and RepLKNet, but
Fig. 16 shows that the strength of shape bias is stronger for
SLaK, ConvNeXt, and RepLKNet, in that order. These facts
negate any simple correlation between the strength of the
shape bias and ERF. Also, considering our findings in this
paper, the strength of the shape bias seems to be related to
the model’s capability to generate feature maps with large
activation regions.

On the other hand, from a more microscopic perspec-
tive, the relationship between shape bias and ERFs can
be seen. As an example, consider the clock category in
Fig. 16. Clock is a category with strong shape bias in many
models—an image whose shape is a clock and whose style
is another category (e.g., elephant) is likely to be predicted
as a clock category. Among the images whose shape is a
clock, the ERFs obtained from the group of images pre-
dicted to be in the clock category and predicted to be in the
style side category show that the former ERF is larger for
most models (Fig. 17). These results can provide clues to
understanding the perceived usefulness of large ERFs, in-
cluding long-range dependencies.

11. CAM(Class Activation Map) Calculation
Method and Semantic Interpretation

Class Activation Map (CAM) is a method for localizing ob-
ject regions in an image that belong to a specific category

using CNN with Global Average Pooling (GAP). It is a typ-
ical method in WSOL tasks and is often used as a base-
line method. To calculate CAM, the feature maps of the
final convolutional layer and the weights of the FC layer
that connect the feature vectors obtained by GAP of those
maps to the final logit are used (Fig. 15). The feature maps
of the final convolutional layer is F', the n-th channel slice
is F,, € RI*7 and the size of the feature map F, is I x J.
The feature map F' in original CNN architecture is trans-
formed into a feature vector G € RY by GAP layer. The
scalar GG, corresponding to the feature map F, is the glocal
average pooling of F},

1 L.
G =7 J;;Fn,m,y). (1)

The feature vector G obtained here is transformed into
a C-dimensional logit vector through the final FC layer (C'
is the number of classes). Let W be the weight of the FC
layer of size N x C. The weight between the feature scalar
G, and the final logit for the class cis W, . € R. The class
activation map M, € R7* for class c is then given by the
following weighted sum over the channel dimension

N
Afa = Z Wn,(: . Fn- (2)
n=1

The semantic interpretation of the CAM is as follows.
In the classification model, the N weights between the N
elements of feature vector G € R” and the final logit for
a given class c¢ can be interpreted as carrying information
about how important each feature element GG,, € R should
be to obtain correct class predictions. In addition, spatially
meaningful information is stored in the feature map of the
CNN. Therefore, by assigning this weight as the importance
of each feature map F,, € R’*”, spatially meaningful re-
gions emerge from the feature map set.

In the WSOL task, binarization by threshold is used to
obtain the prediction results of localization from the gen-
erated heatmap as a bounding box. According to the [9],
the determination of the threshold value should be calcu-
lated using a different dataset (fullsup dataset) than the data
for classification model training or the final prediction. The
method of obtaining the final predicted regions from the bi-
narized map depends on the evaluation method (MaxBox-
Acc or MaxBoxAccV?2).

12. Details of Problems Faced by CAM in
WSOL Tasks

This chapter provides a detailed description of the problems
CAM faces in the WSOL task shown in Fig. 2. The two
problems shown in the figure are also discussed in [3].
First, for the three feature maps and weights indicated by
F; in the upper row in Fig. 2. In training for classification,
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Figure 15. Calculation process of CAM. To calculate CAM, the feature maps of the final convolution layer and the weights of the FC layer,
which connect the feature vectors obtained by global average pooling of those maps to the final logit, are used.
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Figure 16. Texture bias and shape bias measurements in the latest
CNNG.

the smaller (larger) the activation area of a feature map, the
larger (smaller) the weight tends to be, and F; in the fig-
ure represents such a state. If the CAM is calculated under
such conditions, it will look like the CAM in the upper right
corner. The central feature map, which has a small activa-
tion area but large weights, has a significant contribution to
the generated CAM, resulting in a CAM in which the bird’s
head is particularly activated. For clarity, the CAM is gen-
erated here from only three feature maps corresponding to
positive weights (F),,), but this is a known problem that
occurs regardless of the plus/minus of the weights or the
number of maps.

Next, for the three feature maps and weights indicated by
F; in the bottom row. These feature maps activate portions
of the object region that are not important for classification.
The activation of feature maps corresponding to negative
weights (hereafter referred to as F,,.4) should ideally not
be activated in the classification task, since it only reduces
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Figure 17. Graph comparing ERF sizes obtained from different
image groups. For images whose shape is clock and whose style
is the other category, the ERF sizes obtained from the group of
images predicted to be in the clock category are shown in blue.
The ERF sizes obtained from the group of images predicted to be
in the style side category are shown in red. The calculation of ERF
size is the same as in Fig. 10 (a).

the activation value of the final logit for the correct target
class. However, F,., are generally also activated. In this
case, the activated region should be at least a no-object re-
gion to avoid adversely affecting the shape of the CAM. It
is however often activated within an object region, such as
F;. Fyeq works to deactivate those activated regions when
computing the CAM. In this example, the areas of the bird’s
abdomen and feet are deactivated. Thus, when the CAM for
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Figure 18. Relationship between activation areas of the feature
maps and weights. The activation area is calculated by binarizing
the feature map with a threshold of 10 and calculating the per-
centage of pixels that exceed the threshold. Experiments on Con-
vNeXt, RepLKNet, and SLaK, fine-tuned on the CUB-200-2011
dataset.

F;, which was already locally activated, is combined with
the CAM for I}, it becomes an even more locally activated
CAM (bottom right CAM).

13. More Analysis of Activation Area Size and
Weight Size

Each plot in Fig. 18 shows the relationship between
activation areas of the feature maps and weights.
This is the same experiment as in Fig. 5, but us-
ing a model that did not have the best WSOL score.
The model identifiers used are ConvNeXt_tiny,
RepLKNet31B22K224, and SLaK_tiny51_224.
The model identifiers with the best WSOL scores
(Fig. 5) are ConvNeXt_base_384_1in22ftlk,
RepLKNet31B1K384, and SLaK_base51_384.

Fig. 19 shows the relationship between GAP values of
the feature maps and weights. This is the same experi-
ment as in Fig. 12, but using a model that did not have the
best WSOL score. The non-best scoring model used are the
same as in Fig. 18.

Each figure shows that similar trends discussed in the
main text can be observed even when the model is changed.

14. Quantification of Feature Maps Complex-
ity

For the reasons discussed in Sec. 4.5, we believe that Fig. 8
is material to quantify the complexity of the feature maps.
In addition, for more direct quantification, we performed an
analysis using dictionary learning. Specifically, the dictio-
nary is learned from the sampled feature maps using Or-
thogonal Matching Pursuit method, and feature maps not
used for training are reconstructed using the dictionary. The
more complex the feature map set, the larger the reconstruc-
tion error is expected to be. Fig. 20 shows the reconstruction
errors when the number of components in the dictionary is
varied. Regardless of the number of components, the re-
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Figure 19. Relationship between GAP values of the feature maps
and weights. Experiments on ConvNeXt, RepLKNet, and SLaK.
Models with non-best WSOL scores in CUB-200-2011 dataset are
used and the weights are randomly initialized. Plotted against 100
groups of feature maps obtained from 100 random images selected
from the same dataset.
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Figure 20. Reconstruction error by dictionary learning.

lationship between the three models is constant, with Con-
vNeXt having the largest error. In addition, the relationship
between the three models and the results in Fig. 8 is con-
sistent and supports our assertion. Note that SLaK feature
maps of low complexity are exceptional in quality and size
(Fig. 3, Fig. 7, Tab. 3).

15. What Does the Architecture Need to
Achieve the Desired Characteristics?

What is needed in the architecture to get a feature maps
like ConvNeXt or RepLKNet? Based on our results so far,
we believe it is important to use a simple, large kernel that
does not involve decomposition into rectangular kernels or
spercity as used in SLaK. This is an insight gained from the
fact that SLaK inherits most of its architecture from Con-
vNeXt, yet does not have the desired characteristics, and
the similarities between ConvNeXt and RepLKNet, which
have very different architectures. However, answering this
question accurately requires a more comprehensive exami-
nation and is an interesting future study.

16. Additional material on CAM quality differ-
ences between RepLLKNet and ConvNeXt

As mentioned in Sec. 4.4, PC1 in ConvNeXt and RepLKNet
seem to be well suited for localization. Therefore, we
actually generated a localization map based on the bina-
rized PC1 heatmap and used it to measure WSOL scores
(Tab. 3). As a result, RepLKNet scored higher than Con-



vNeXt. Furthermore, ConvNeXt’s IoU threshold [9] is very
high (Tab. 3). The high IoU threshold implicitly indicates
the large activation area. For example, if the activation area
tends to be larger than the actual object area, the threshold
should be higher to round unwanted activation to zero for
localization. In fact, when several WSOL methods are ap-
plied to ResNet, the optimal IoU threshold is between 10
and 40 [9]. Additionally, the average optimal thresholds for
the CAMs of ConvNeXt, RepLKNet, and SLaK in this pa-
per were 45, 28.5, and 4.1, respectively. Thus, the threshold
for ConvNeXt+PCl is high and can be interpreted as large
PC1 activation. This result is another material that the qual-
ity of RepLKNet’s PC1 is superior to that of ConvNeXt.
Interestingly, the WSOL score based on PCI is even
higher than the CAM score discussed in this paper (Tab. 1,
Fig. 1), with a RepLKNet MaxBoxAcc of 93.6% (Tab. 3).
To our knowledge, this is 0.43% higher than the state-of-
the-art performance of CNN-based WSOL (Tab. 1). Simply
put, this new WSOL method uses PC1 instead of feature
maps in CAM. See Sec. 17 for details on the methodology.

17. Details of WSOL Method Using PC1

This section provides details on the WSOL methodology re-
ported in Sec. 4.5 and Sec. 16. In this method, localization
maps are generated from PC1 features obtained by PCA.
As shown in Fig. 7, the visualized PC1 features do not tell
whether the object region is white or black. This method
contains an ingenious solution to this problem. The pro-
cedure is as follows. (1) Perform PCA instead of GAP in
CAM to obtain PC1 features. (2) Binarize PC1 using the
average value of all pixels in PC1 as the threshold value.
(3) Calculate the average value of the outer edge pixels of
the binary map (e.g., 44 pixels for a 12x12 map). (4) For
example, if the average value (3) is close to 0, the object
area shall be indicated by 1. This method has some char-
acteristics that should be noted, including the lack of class
discriminability and the fact that it is heavily influenced by
the quality of the feature maps. However, high WSOL per-
formance can be expected for models with high-quality fea-
ture maps. The code for our experiments is available at:
https://github.com/snskysk/C AM-Back-Again.



