
BigGait: Learning Gait Representation You Want by Large Vision Models
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Figure 7. Visualization of intermediate representations. This figure is a supplement for Fig. 5.

7. Supplementary Material
In this section, we first provide the details of the Pad-and-
Resize trick used for preserving body aspect ratio. Then
more experimental results under both the within and cross-
domain scenarios are presented. Finally, we conducted
more visualization to understand the learned characteristics.
Some related issues in rebuttal are attached as well.

7.1. Pad-and-Resize

Large vision models tend to directly resize the RGB frame
within different bounding boxes into a fixed size, thereby
completely or temporarily losing the authenticity of body
proportions crucial for gait description. Comparing (a) with
(b) in Tab.5, this lack of attention to body structure can lead
to a significant performance drop. Therefore, this paper
adopts a straightforward strategy, i.e., conducting two-side
padding or cutting horizontally to force the frame to be a
predetermined aspect ratio of 2 : 1, and then resizing it into
a fixed resolution of 448 × 224, all while maintaining the

original aspect ratio of body parts. Intuitively, the presence
of double-sided black regions shown in Fig.2 (a) contributes
to the preservation of limb ratios.

7.2. More Experimental Results

Within-domain Evaluation. Tab. 8 presents more within-
domain performance comparisons. We observe that Big-
Gait exhibited impressive performance on various kinds
of datasets, including CCPG [7] with abundant clothing
variations, CASIA-B* [14] focusing ups-clothing changes,
and nearly cloth-unchanging SUSTech1K [11]. Compared
with video-based ReID methods [6, 13], BigGait signifi-
cantly outperforms them on the CCPG [7] comprising rich
and challenging cloth-changes, and achieves similar per-
formance on other two datasets [11, 14]. Compared with
silhouette-based methods [1, 4], BigGait surpasses them on
all of these datasets [7, 11, 14]. Moreover, Tab. 9 provides
more within-domain results under ReID evaluation proto-
cols on CCPG. The above results indicate that BigGait can

1



Table 8. Within-domain Evaluation. Rank-1 accuracy on the four popular benchmark datasets under the within-domain task: BigGait
v.s. recent SoTA methods.

Type Model
Within-domian Evaluation

CCPG [7] CASIA-B* [14] SUSTech1K [11] CCGR [17]
CL UP DN BG NM BG CL Normal Umbrella Uniform Clothing Night Overall R-1hard R-1easy R-5hard R-5easy

Gait
Recognition

GaitSet [1] 60.2 65.2 65.1 68.5 92.3 86.1 73.4 71.4 66.2 63.8 39.4 24.0 67.1 25.3 35.3 46.7 58.9
GaitBase [4] 71.6 75.0 76.8 78.6 96.5 91.5 78.0 80.9 74.8 76.3 47.2 26.4 75.8 31.3 43.8 51.3 64.4

Video-
based ReID

AP3D [6] 53.4 57.3 69.7 91.4 99.8 99.4 87.6 94.4 95.3 91.6 82.7 89.4 96.8 70.2 82.5 83.0 92.4
PSTA [13] 42.2 52.2 60.3 84.5 98.2 96.5 54.2 92.9 92.1 83.2 72.3 79.9 93.6 74.5 85.0 86.2 93.7

Ours BigGait 82.6 85.9 87.1 93.1 100.0 99.6 90.5 96.1 96.0 93.2 73.3 85.3 96.2 77.1 86.2 87.9 94.3

Table 9. Within-domain Evaluation on CCPG. This is a supplement for Tab.3, providing more results under ReID Evaluation Protocol.

Input Model Venue
Gait Evaluation Protocol ReID Evaluation Protocol

CL UP DN BG Mean CL UP DN BG Mean

Skeleton
GaitGraph2 [12] CVPRW’22 5.0 5.3 5.8 6.2 5.6 5.0 5.7 7.3 8.8 6.7

Gait-TR [16] ES’23 15.7 18.3 18.5 17.5 17.5 24.3 28.7 31.1 28.1 28.1

MSGG [9] MTA’23 29.0 34.5 37.1 33.3 33.5 43.1 52.9 57.4 49.9 50.8

Sils

GaitSet [1] TPAMI’22 60.2 65.2 65.1 68.5 64.8 77.5 85.0 82.9 87.5 83.2

GaitPart [2] CVPR’20 64.3 67.8 68.6 71.7 68.1 79.2 85.3 86.5 88.0 84.8

AUG-OGBase [7] CVPR’23 52.1 57.3 60.1 63.3 58.2 70.2 76.9 80.4 83.4 77.7

GaitBase [4] CVPR’23 71.6 75.0 76.8 78.6 75.5 88.5 92.7 93.4 93.2 92.0

DeepGaitV2 [3] Arxiv 78.6 84.8 80.7 89.2 83.3 90.5 96.3 91.4 96.7 93.7

Parsing GaitBasep CVPR’23 59.1 62.1 66.8 68.1 64.0 75.9 81.3 86.5 87.5 82.8

Parsing+Sils GaitBasep+s CVPR’23 73.6 76.2 79.1 79.2 77.0 89.3 91.9 93.0 94.3 92.1

Skeleton+Sils SkeletonGait++ [5] AAAI’24 79.1 83.9 81.7 89.9 83.7 90.2 95.0 92.9 96.9 93.8

RGB+Sils GaitEdge [8] ECCV’22 66.9 74.0 70.6 77.1 72.2 73.0 83.5 82.0 87.8 81.6

RGB

AP3D [6] ECCV’20 53.4 57.3 69.7 91.4 67.8 62.6 67.6 82.0 97.3 77.4

PSTA [13] ICCV’21 42.2 52.2 60.3 84.5 59.8 51.9 62.0 72.3 94.1 70.1

PiT [15] TII’22 41.0 47.6 64.3 91.0 61.0 49.1 56.2 78.0 96.9 70.1

BigGait Ours 82.6 85.9 87.1 93.1 87.2 89.6 93.2 95.2 97.2 93.8

extract robust gait patterns on different kinds of gait datasets
and on different evaluation protocols.
CCGR Evaluation. CCGR [17] is a recently released
well-labeled gait dataset consisting of over 1.5 million se-
quences, which has 970 subjects with 33 views and 53 walk-
ing conditions. We evaluate the performance of BigGait
trained on CCGR under various tasks. As shown in Tab. 8
and Tab. 10, BigGait trained on CCGR surpasses all SoTA
methods under the within and cross-domain tasks. Compar-
ing Tab. 11 and Tab. 12, BigGait presents comparable per-
formance with video-based ReID methods under the single-
covariate task, and more outstanding performance under the
mixed-covariate task than SoTA methods. Based on these
results, we consider that BigGait learns robust gait repre-
sentation to resist various covariates.

7.3. More Visualizations

To better understand the representation learned by BigGait,
more visualizations are provided in Fig. 7 and Fig. 8.
Intermediate Feature Maps. Fig. 7 created by the PCA
method exhibits a supplement for Fig. 5 and shows more
intermediate feature maps. As we can see, all-purpose fea-
tures fc produced by the upstream DINOv2 are dominated

by the separation of foreground and background regions ac-
companied by noisy spots. The mask branch in BigGait can
automatically infer the foreground mask m from fc in an
unsupervised manner. Compared with silhouettes, m only
presents the coarse-grained approximation of body segmen-
tation. After masking the background regions, fc becomes
fm and displays a parsing-like representation, i.e., purple
head, red abdomen, yellow arm, green leg, and blue shoe.

However directly using the all-purpose features fm can
result in inferior performances, as shown in Tab. 5 (c).
We consider that all-purpose features fm also contain gait-
unrelated noise in foreground regions, like the noisy spots
in the background regions of fc. To alleviate this problem,
the Gait Representation Extractor (GRE) is designed to ex-
tract effective gait representations from fm while excluding
gait-unrelated noise, as mentioned in Sec. 3. Specifically,
GRE converts fm into fap and fde, with fap inheriting fea-
tures by a linear transformation and showing body shape
representation with high-frequency texture noise, and fde
embodying highly consistent skeleton-like structure repre-
sentation by deploying soft geometric constraints to denoise
most high-frequency texture noise.
Activation Maps. Fig. 8 obtained by the Grad-CAM [10]



Table 10. Cross-domain Evaluation. This table is a supplement
for Tab. 4, in which all methods are trained on CCGR and tested
on three unseen datasets.

Model
Test Set

CCPG CASIA-B* SUSTech1K
CL UP DN BG NM BG CL Clothing Night Overall

GaitSet 7.6 13.4 16.2 30.1 32.8 22.2 12.9 13.9 16.9 21.6
GaitBase 5.8 10.2 15.7 26.3 22.1 14.1 7.5 13.4 16.5 27.6

AP3D 9.8 18.2 25.4 54.7 60.6 55.4 19.7 59.8 48.7 71.3
PSTA 10.1 17.9 22.0 52.7 31.4 27.8 14.2 55.0 40.3 65.4

BigGait 20.8 38.2 31.9 83.6 93.1 91.8 61.7 73.8 76.8 88.1

Table 11. Single-Covariate Evaluation: R-1easy accuracy (%)
with excluding identical-view cases on CCGR dataset.

Gallery: Normal 1

Publication CVPR’23 ICCV’21 Ours

Type Covariate Abbr. GaitBase PSTA BigGait

Carrying

Book BK 65.7 96.7 94.8
Bag BG 64.9 96.1 94.1

Heavy Bag HVBG 60.0 95.4 93.6
Box BX 61.5 95.6 93.5

Heavy Box HVBX 58.7 95.3 93.6
Trolley Case TC 64.1 94.2 93.0

Umbrella UB 47.2 89.5 85.4

Average - 60.3 94.7 92.6

Clothing Thick Coat CL 40.4 88.6 88.7

Road

Up Ramp UTR 60.3 90.3 91.7
Down Ramp DTR 60.5 93.2 93.3

Up Stair UTS 54.9 92.0 92.5
Down Stair DTS 54.0 93.3 93.1

Bumpy Road BM 63.3 93.4 93.2
Curved Road CV 70.0 94.4 93.6

Soft Road SF 66.0 93.7 93.1

Average - 61.3 92.9 92.9

Speed

Normal 1 NM1 76.6 97.6 96.1
Fast FA 47.2 94.8 91.3

Stationary ST 32.0 92.3 88.1

Average - 51.9 94.9 91.8

Walking
Style

Normal 2 NM2 75.3 97.5 95.8
Confident CF 64.9 96.1 94.3
Freedom FD 57.1 93.7 93.6

Multi-person MP 24.0 51.1 47.8

Average - 55.3 84.6 82.9

algorithm exhibits a supplement for Fig. 6 and shows more
activation maps on BigGait and video-based ReID meth-
ods [6, 13, 15]. The visualization insights are the same as
in Fig. 6.

7.4. Related Issues in Rebuttal

Q1: BigGait’s Representation can be noisy. We argue
a representation should be validated by the performance
statistics drawn from a large test set, instead of one or two
visual examples. Traditional gait representations could be
noisy too, e.g., silhouette includes clothing shapes and/or
segmentation errors on in-the-wild imagery. BigGait does

Table 12. Mixed-Covariate Evaluation: R-1easy accuracy (%)
with excluding identical-view cases on CCGR dataset. We use ”-”
to connect the mixed covariates.

Gallery: Normal 1

Publication CVPR’23 ICCV’21 Ours

Category Covariate GaitBase PSTA BigGait

Two
Mixed

CL-UB 25.2 73.4 70.7
HVBX-BG 52.1 94.5 92.7

BG-TC 58.1 93.3 92.4
SF-CL 36.1 82.0 87.0

UTR-BX 51.0 88.9 90.2
DTR-BK 55.1 93.1 93.3

DTS-HVBX 42.6 91.9 92.4
UTS-BG 46.8 90.5 91.6
BM-CL 35.2 79.6 86.0

CV-HVBX 61.0 94.3 93.3
CL-CF 39.2 88.4 88.6

Average 45.7 88.2 88.9

Three
Mixed

CL-UB-BG 23.4 71.3 69.1
BX-BG-CL 35.1 82.9 84.1
BG-TC-CL 34.3 81.8 85.0
SF-UB-BG 36.4 83.5 82.2

UTR-HVBX-CL 31.8 77.0 83.9
DTR-BK-BG 49.2 92.3 92.9

DTS-HVBX-CL 26.4 74.9 83.4
UTS-BG-CL 25.1 76.0 84.9
BM-CL-BG 33.0 78.4 85.2
CV-BX-BG 58.8 93.7 93.1
UB-BG-FA 28.0 83.0 79.2

Average 34.7 81.3 83.9

Four
Mixed

CL-UB-BG-FA 16.2 67.5 63.8
BM-CL-BG-BX 32.2 76.3 83.5
BG-TC-CL-CV 38.0 79.4 86.4

DTR-BK-BG-CL 32.2 78.8 86.9
DTS-BX-CL-BG 25.6 73.2 82.7
SF-UB-BG-CL 20.6 66.7 69.3
BG-TC-CL-ST 11.7 66.8 66.5

UTS-UB-BG-CL 15.8 61.6 70.3

Average 24.0 71.3 76.2

Five
Mixed

BG-TC-CL-
CV-UB 34.1 69.6 73.8

UTR-BG-CL-
BX-CV 31.3 73.8 84.8

demonstrate superiority in cross-clothing and cross-domain
tasks, where background/accessory are different between
training vs testing data. More discussions are in Sec. 4.2.
Q2: Background info inflates BigGait’s performance.
We believe BigGait’s superiority is not due to the back-
ground, from 3 observations. 1) Compared Tab. 5 (a) with
(d), including backgrounds in BigGait harms its perfor-
mance. 2) In Tab. 3 and 4, BigGait outperforms ReID meth-
ods by large margins though the latter can see full back-
grounds. 3) The visualization of activation maps in Fig. 6
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Figure 8. Visualization of activation maps. Unlike video-based ReID methods, BigGait focus on robust gait pattern rather than background
and clothing texture noises. This figure is a supplement for Fig. 6.

further reflects that BigGait focuses on foreground regions.
Q3: How to handle color noises? BigGait regards tex-
ture noises as high-frequency signals. Thus we assume
that here color noises refer to low-frequency ones. Thanks
to the fitting power of neural networks, training models
with cross-clothing pairs can partially learn the immunity
to these noises (texture and color). But the red box of
Fig. 6 shows that it is the high-frequency that still heav-
ily impacts existing RGB-based methods. Hence, we con-
sider high-frequency textures as the primary challenge, and

meanwhile, look forward to further improvements brought
by color-specific designs. Thanks for providing this insight.
The revision will discuss it in detail.

Q4: Why not directly using fde? Some gait-related fea-
tures like the body shape may be partially damaged by the
geometrical constraints of the denoising branch, while care-
fully preserved by the appearance branch. In light of this,
we choose to fuse fde and fap by attention mechanisms, as
shown in Fig. 3 and supported by Tab. 5.
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