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A. Architecture Details on Downstream Tasks
A.1. Classification tasks

We utilized a tokenizer chosen from the set
{T 1d, T 2d, T 3d} based on the dimensionality of input
data, the encoder ϕ, and the newly appended Multi-Layer
Perceptron (MLP) head to output the desired predictions.
The architectures of these MLP heads are tailored to suit
the specific requirements of individual datasets.
PudMed20k dataset and RICORD dataset: A two-
layer MLP head is adopted as the head. The first layer
has 768 neurons followed by a layer normalization layer
and the Gaussian error linear units (GELU). The second
layer decreases the number of neurons to 5 and 2 for the
PudMed20k and RICORD datasets, respectively.
ChestXR dataset and NCH dataset: A one-layer MLP
head is adopted as the head. The number of neurons is 3
and 9 on ChestXR and NCH datasets, respectively.

A.2. Segmentation tasks

We utilized a tokenizer chosen from the set {T 2d, T 3d}
based on the dimensionality of input data, the encoder ϕ,
and the randomly initialized decoder and segmentation head
to produce prediction maps. Following [1, 5], we devised
2D and 3D versions of decoders and segmentation heads to
handle tasks in corresponding dimensions.

Considering a 2D image I ∈ RC×H×W with resolution
(H,W ) and C input channels, it is divided into flattened,
non-overlapping token sequences Iseq ∈ RN×(P 2C). Here,
(P, P ) represents the resolution of each patch, and N =

†Yutong Xie and Yong Xia are the corresponding authors.

(H × W )/P 2 denotes the total number of patches. These
token sequences are then passed through the encoder, from
which we extract four sequence features {z4, z7, z10, z12},
corresponding to the output of the 4-th, 7-th, 10-th, and
12-th layers. These features zi ∈ R

H×W

P2 ×768 are subse-
quently reshaped to the shape of 768 × H

P × W
P . The bot-

tleneck output of the encoder, i.e., z12, along with the mid-
stage output z10, are processed by deconvolutional layers
to upscale their resolutions. After concatenation, the ob-
tained features are input into a residual convolution block
to produce fused feature maps. Such a similar process is it-
eratively applied across all subsequent decoder layers up to
the original input resolution where the last output is passed
through a 1 × 1 convolutional layer to generate pixel-wise
segmentation predictions. More details were displayed in
Fig. 1.

For 3D image inputs, we employ a similar architecture,
where the 2D tokenizer, convolutional layers, and normal-
ization layers are replaced with their 3D counterparts, al-
lowing for accepting 3D data.

B. Dataset Details
B.1. Details of upstream datasets

JPG version of the MIMIC-CXR 2.0.0 dataset: This ex-
tensive public dataset comprises 377,110 JPG format chest
radiographs and 227,827 clinical reports associated with
these images. Following [6, 11], we excluded all lateral
views from the dataset, as the downstream datasets only
contain frontal-view chest images. This resulted in a col-
lection of 227,323 clinical reports and 356,309 chest radio-
graph images.

https://physionet.org/content/mimic-cxr-jpg/2.
0.0/
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Figure 1. Illustration of model architecture for 2D segmentation tasks.

DeepLesion dataset: This dataset includes 10,594 CT
scans collected from 4,427 subjects . Following [8], each
CT scan was resampled to a uniform spacing of 1.0 ×
1.0× 1.0. We then applied cropping and resizing strategies
to extract 125,070 sub-volumes. Specifically, we cropped
each scan along the depth dimension using 24 window
lengths and 12 strides, resizing the obtained sub-volumes
to 16× 192× 192.
ADNI dataset: This dataset is a combination of ADNI-1,
ADNI-2, and ADNI-GO datasets, utilizing a defined screen-
ing strategy . The selection was based on diagnostic la-
bels such as Alzheimer’s disease, mild cognitive impair-
ment, and cognitively normal, without specific considera-
tion for sex, age, slice thickness, and manufacturer. Each
MRI scan was cropped along the depth dimension using 16
window lengths and 8 strides, resizing the cropped volumes
to 16 × 192 × 192. In total, 59,205 sub-volumes were ex-
tracted.
TCGA dataset: Comprising seven projects (TCGA-
THYM, TCGA-THCA, TCGA-BRCA, TCGA-UCEC,
TCGA-UVM, TCGA-OV, and TCGA-MESO) , this dataset
includes a variety of pathological images. We processed
these images by cropping them into non-overlapped 512 ×
512 patches and resizing them to 224×224. For each patient
with n patches, we randomly selected min(100, n) patches
for training data.

B.2. Details of downstream datasets

In Table 1, we provide the implementation details of nine
downstream datasets. This includes information on the task
type, modality, loss function, patch size, optimizer, learn-
ing rate, batch size, and maximum iterations. Additional

https://nihcc.app.box.com/v/DeepLesion
adni.loni.usc.edu
https://portal.gdc.cancer.gov/

information on each dataset is as follows: (1) PudMed20k
dataset. This dataset contains 20,000 abstracts from ran-
domized controlled trials (RCTs), featuring a vocabulary
of 68,000 words across 240,000 sentences. Each sentence
is categorized into one of five labels: background, objec-
tive, method, result, or conclusion. We adopted the official
data split, dividing the dataset into training, validation, and
test sets, utilizing only the text data for category prediction.
(2) ChestXR dataset. This dataset focuses on detecting
COVID-19, pneumonia, or normal in Chest X-ray images.
It includes an official split of 14,958 training images and
3,432 test images, with 20% of the training data randomly
selected as the validation set. (3) QaTa-COV19-v2 (QaTa)
dataset. This dataset is utilized for COVID-19 infected re-
gion segmentation, with an official split of 7,145 training
and 2,113 test images. A random 20% of the training data
serves as the validation set. (4) RICORD dataset. This
dataset contains 330 CT scans, which are divided into two
categories: COVID-19 and normal. All images were resized
to 64 × 192 × 192. We followed the data split in [7]. (5)
LiTS dataset. This dataset includes 131 CT scans with an-
notations of liver and liver tumor segmentation, following
the data split in [9]. The data were preprocessed by us-
ing nnUNet’s preprocessing procedure [2]. (6) Vestibular-
Schwannoma-SEG (VS) dataset. This dataset contains
242 MRIs collected on patients with vestibular schwan-
noma. We followed the data split in [9]. The data were
preprocessed by using nnUNet’s preprocessing procedure
[2]. (7) LA dataset. This dataset provides 100 gadolinium-
enhanced MRIs paired with left atrium ground truths. We
followed the data split and preprocessing steps described
in [10]. (8) NCH dataset. It consists of the NCT-CRC-
HE-100K dataset (training set) and the CRC-VAL-HE-7K
dataset (test set). We randomly sample 20% of the training
data as the validation set of each category. (9) GlaS dataset.

https://nihcc.app.box.com/v/DeepLesion
adni.loni.usc.edu
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Table 1. Implementation details of nine downstream tasks. CE: cross-entropy loss function.

Dataset Task Type Modality Loss Function Patch Size Optimizer Learning Rate Batch Size Iterations

PudMed20k Cls 1D Report CE 112 AdamW 0.0002 64 14,065
ChestXR Cls 2D X-ray CE 224× 224 AdamW 0.00005 32 35,840

QaTa Seg 2D X-ray Dice + CE 224× 224 AdamW 0.0001 16 25,000
RICORD Cls 3D CT CE 64× 192× 192 AdamW 0.00001 8 9,600

LiTS Seg 3D CT Dice + CE 64× 192× 192 AdamW 0.0001 2 25,000
VS Seg 3D MR Dice + CE 64× 192× 192 AdamW 0.0001 2 25,000
LA Seg 3D MR Dice + CE 64× 192× 192 AdamW 0.00005 2 25,000

NCH Cls 2D Path. CE 224× 224 AdamW 0.0001 32 24,990
GlaS Seg 2D Path. Dice + CE 512× 512 AdamW 0.0001 4 25,000

Table 2. Fine-tuning performance of five pre-trained models on four datasets, each representing different modalities. DeSD: 3D ResNet
pre-trained on CT scans; Path DINO: ViT pre-trained on pathological images; PCRLv2 (CheXpert/LUNA): 2D and 3D ResNets pre-
trained on CheXPert (X-rays) and LUNA (CT scans), respectively; UniMiSS: Dimension-free pyramid U-like medical transformer (MiT)
pre-trained on X-rays and CT scans. × means the model is incompatible with the dataset’s data, resulting in an inability to be fine-tuned.

Method PudMed20k (Report) ChestXR (X-ray) RICORD (CT) NCH (Path.)

ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

DeSD [8] × × × × × × 78.57 83.46 83.74 × × ×
PCRLv2 (LUNA) [12] × × × × × × 81.35 86.24 86.62 × × ×

Path DINO [3] × × × 93.00 98.32 92.35 × × × 96.10 99.61 94.47
PCRLv2 (CheXpert) [12] × × × 95.41 99.03 94.95 × × × 92.99 99.12 89.56

UniMiSS [7] × × × 94.00 98.79 93.46 82.94 87.48 87.52 93.08 99.23 89.99
MedCoSS 83.59 95.38 77.87 94.31 98.83 93.77 83.33 88.74 87.87 95.76 99.51 94.01

Table 3. Performance of different backbones with different pre-
trained models. CT: single-modal SSL pre-training on CT data.
The best result in each column is highlighted with bold.

Method Backbone Liver Liver tumor Average

Dice HD Dice HD Dice HD

CT ViT/B 95.82 7.39 48.13 60.19 71.98 33.79
MedCoSS ViT/B 95.41 9.54 48.61 63.47 72.01 36.50

DeSD [8] ResUNet 96.81 4.24 65.27 26.84 81.04 15.54
CT + DeSD ResUNet + ViT/B 96.82 3.67 66.14 26.99 81.48 15.33

MedCoSS + DeSD ResUNet + ViT/B 96.90 3.27 66.79 27.84 81.84 15.56

This dataset includes 165 pathological images from H&E-
stained colon tissue sections, labeled as malignant or be-
nign. We adhere to the official data split and randomly sam-
ple 20% of the training data for each category as the valida-
tion set.

C. Comparing to Pre-trained Models

We compared our MedCoSS over recent popular pre-trained
models, including DeSD [8], PCRLv2 [12], Path DINO [3],
and UniMiSS [7]. All competing models were employed
using their officially released weights and were fine-tuned
for specific downstream tasks. The results shown in Ta-
ble 2 indicate that most models, except for the model from
UniMiSS, are limited to handling data of a specific dimen-
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Figure 2. Illustration of the combination of ResUNet and ViT/B.
The parameters of ResUNet and ViT/B are learnable and frozen,
respectively.

sion. These models demonstrate a significant decrease in
performance when tasked with handling data from a differ-
ent modality. For instance, Path DINO demonstrates supe-
rior performance across all metrics on the NCH dataset, yet
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Figure 3. Visualization of segmentation results obtained by TFS, Joint SSL*, Joint SSL†, EWC, ER, PackNet, CaSSLe, and MedCoSS,
and ground truths (GTs). The organs are colored red, and the tumors and malignant regions are colored green.
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Figure 4. t-SNE visualizations of embeddings from the Joint SSL*
and MedCoSS on five modality data.

it obtains the worst performance across all metrics on the
ChestXR dataset. In contrast, our MedCoSS is versatile,
accepting 1D, 2D, and 3D data, and consistently achieves
robust generalization performance across all tasks.

D. Improving 3D Segmentation

While ViT-based models excel in uniformly handling multi-
dimensional medical tasks and overcoming dimensional
constraints, they tend to underperform in accurately seg-
menting small targets, such as tumors, which are prone to

disappear or lost during passing through the tokenizer mod-
ule. Inspired by nnSAM [4], we propose an integration of
well-pre-trained ViT (obtained from MedCoSS or single-
modal SSL) with CNN-based models (obtained from DeSD
[8]). This integration strategy, illustrated in Fig. 2, was
tested on the LiTS dataset, containing liver and liver tumor
segmentation annotations. The results in Table 3 reveal that
the pre-trained ResUNet obtained from DeSD achieves a
significant performance gain compared to ViT-based mod-
els pre-trained by MedCoSS or single-modal SSL (CT).
More importantly, the combination of ViT and ResUNet
leads to further enhancement in performance. This find-
ing highlights the effectiveness of the integration, suggest-
ing an alternative approach for leveraging the advantages of
multi-modal pre-training to enhance the model’s segmenta-
tion performance.

E. Visualization of Segmentation Results

For a qualitative comparison, we visualized the segmen-
tation results derived from TFS, Joint SSL*, Joint SSL†,
EWC, ER, PackNet, CaSSLe, and MedCoSS across five
datasets, as shown in Fig. 3. These visualizations reveal that



the segmentation results from MedCoSS most closely align
with the ground truths (GTs), effectively avoiding issues of
over-segmentation and under-segmentation. For example,
as shown in the second row of Fig. 3, MedCoSS uniquely
identifies a small liver tumor in the CT images, a task where
the other paradigms fail.

F. Visualization of Modal Data Collision
We visualized the distribution of five pre-training modalities
obtained by Joint SSL (with dimension-shared decoders)
and MedCoSS in Fig. 4, where 10K samples were ran-
domly selected from each modality. It shows that, for Joint
SSL, the embeddings of different modalities are dispersed
and lack clear classification boundaries, indicating that Joint
SSL is limited in distinguishing and capturing the unique
features of each modality. In contrast, MedCoSS’s visu-
alization displays a distinct and compact cluster for each
modality, with clear boundaries. It suggests that MedCoSS
is more adept at recognizing and preserving the distinct
characteristics of each modality. The visualization of Joint
SSL intuitively verifies the concept of modal data colli-
sion. This collision can hinder the model’s ability to dis-
tinguish each modality, which is a challenge that MedCoSS
addresses effectively.
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