
Deep Video Inverse Tone Mapping Based on Temporal Clues

Supplementary Material

1 Overview

In this supplementary material, additional explanations and analyses have been provided. Firstly, the details of the testing

dataset are given in Section 2, and the details of the synthetic training dataset in Section 3. Secondly, details of the proposed

network architectures are shown in Section 4. Thirdly, additional visual video results are attached into the supplementary

material.

2 Testing dataset

At first we use the inverse camera response curve with gamma 2.2 to map the LDR frames of REDS-val [7] into linear

domain and amplify them with scale factor 8 to form the corresponding HDR version REDS-val-hdr. As specified in the

manuscript, there is no corresponding LDR version for the testing real-world HDR datasets HDM-HDRv [1], LiU-HDRv [3],

and MPI-HDRv [2], we generate the LDR videos from them by simulating the camera imaging pipeline. Specifically, for each

sequence of these dataset, we simulate the camera auto exposure process to set a exposure value for them. Unfortunately,

the auto exposure algorithms are usually top of the secret for the camera companies and we cannot get an applicable auto

exposure method from the Internet. Therefore, we try to form the camera auto exposure process by ourselves. We first define

the luminance of the current frame Lframe as the weighting of the luminance of the region of interest Lroi and the overall

average luminance Lavg:

Lframe = αLroi + (1− α)Lavg, (1)

where α is set to 0.7 and the region of interest is defined as in Fig. 1. Then we search an appropriate exposure value T for

each frame to make the Lframe of preliminary generated LDR frame I to be in [0.395,0.405]. The process of formulating

LDR frames is:

I = f(clip(H · T )), (2)

where H is the HDR frame and f is the camera response curve with gamma 1/2.2. Finally, we smooth the exposure value T
in temporal domain to avoid flicker:

Ti = βTi + (1− β)Ti−1, (3)

where i is the temporal index and β is set to 0.8. Finally, we use Ti to generate the LDR sequence as in Eq. (2).
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Figure 1: The illustration of the region of interest.
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3 Examples of Synthetic Dataset

As description in Sec 3.5 of the manuscript, we derive our training dataset from both HDR image datasets and LDR video

datasets. By this way, we can simultaneously exploit the video characteristics of LDR videos and the HDR characteristics of

HDR images. Fig. 2 shows examples of the synthetic dataset. First, we apply a random perspective transformation on HDR

images to simulate camera motion to obtain hdr videos as shown in 1st row of Fig.2. And as the way we obtain REDS-val-hdr,

we get corresponding HDR version REDS-hdr of training set of REDS[7], which are shown in 3nd row of Fig 2. Then, we

derive LDR videos from these hdr videos as shown in 2nd and 4th rows of Fig 2, where we set a high exposure duration T for

the current frame as input and random T for others frames in these sequences.

Figure 2: Examples of the Synthetic Dataset.

4 Details of the proposed models

The detailed architectures of the proposed components are shown in Fig.3. The correction convolutional block and fusion

convolutional block used in the proposed Local Feature Alignment Block are shown in Fig.3 (a) and Fig.3 (b) separately. The

swim transformer block used in the proposed Global Feature Aggregation Block is shown in Fig.3 (c) and the ExpandNet

[6] used in the proposed Feature and Clue Propagation Module is shown in Fig.3 (d). We adopt the swim transformer block

used in [5] [4]. As specified in [4], given an input of size H ×W × C, swim transformer block first reshapes the input to a
HW
M2 ×M2 ×C feature by partitioning the input into non-overlapping M ×M local windows, where HW

M2 is the total number

of windows. Then, it computes the standard self-attention separately for each window. For a local window feature X , the

query, key and value matrices Q, K and V are computed as:

Q = XPQ,K = XPK , V = XPV , (4)

where PQ, PK , and PV are projection matrices that are shared across different windows. Generally, we have Q,K, V ∈

R
M2

×d. The attention matrix is thus computed by the self-attention mechanism in a local window as:

AttentionQ,K, V = SoftMax(QKT /
√
d+B)V, (5)

where B is the learnable relative positional encoding. In practice, following [4], we perform the attention function for h times

in parallel and concatenate the results for multihead self-attention (MSA). Next, a multi-layer perceptron (MLP) that has two

fullyconnected layers with GELU non-linearity between them is used for further feature transformations. The LayerNorm

(LN) layer is added before both MSA and MLP, and the residual connection is employed for both modules. The whole

process is formulated as:

X = MSA(LN(X)) +X,X = MLP (LN(X)) +X. (6)

Furthermore, regular and shifted window partitioning are used alternately to enable cross-window connections [5], where

shifted window partitioning means shifting the feature by (
⌊

M
2

⌋

,
⌊

M
2

⌋

) pixels before partitioning.
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Figure 3: The details of the proposed component.
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