Distilled Datamodel with Reverse Gradient Matching

Supplementary Material

In this document, we present supplementary materials
that couldn’t be accommodated within the main manuscript
due to page limitations. Specifically, we offer additional
details on the proposed DDM framework, elucidating the
computation of the hierarchical attribution matrix through
our framework and the methodology employed for data
clustering.

6. More Details of DDM Framework
6.1. Data Clustering of DDM

To enhance tracing performance, we concentrate on calcu-
lating the weighting matrix for each batch of data, rather
than for each individual image. That is, the total cluster
number K is set as L < K < |D| (L is the total num-
ber of the class). This approach is taken as the impact of a
single image becomes negligible when training with a large
number of images.

In our proposed DDM framework, we employ data clus-
tering to partition the training data into several distinct
batches. Specifically, we utilize a pre-trained feature extrac-
tor to embed the training images into the same feature space.
Subsequently, we apply K-means clustering to the features,
denoting each cluster of data as D, i, where [ = 1,2, ..., L
and ¢ = 1,2, ..., C. This implies that we cluster the images
within a class into C clusters. For each class of data, we set
the number of clusters C' to be 10.

6.2. Accelerating with Hierarchical DDM

As stated in the main paper, to enhance the efficiency of on-
line evaluation, we employ hierarchical attribution calcula-
tion, which expedites the leave-one-out retraining process.
Note that on the offline training stage, both the class-wise
and cluster-wise synset are learned, where the class-wise
one is denoted as S¢q5s = {S1,S2, ..., Sr. } and the cluster-
wise one is denoted as Sciyster = {S1,1,S1,25 - Sz,c}lel
and K = L x C. With this hierarchical synset, we don’t
need to apply the retraining to the entire perturbation set
| P;|. Instead, it is calculated as:
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In the first equation, we require |P;| = L, and in the second
one, we need |P;| = C. Therefore, with this hierarchical
synset, we only need to retrain the networks C' + L times,
significantly reducing the original C' x L retraining to C+ L.

In the standard setting for the CIFAR-10 dataset, where
K = 10 x 10, and for the CIFAR-100 dataset, where K =

100 x 10, the hierarchical synset accelerates the process by
5 times in the CIFAR-10 dataset and 10 times in the CIFAR-
100 dataset.

6.3. Reverse Gradient Matching for Matching Per-
formance Enhancement

In the main paper, we claim that our proposed reverse gra-
dient matching provides enhanced matching performance,
which has been proved in the experiment (‘DDM could be
used as a quick unlearn method’). The reasons for it can
be analyzed by the accumulated errors. Since we perfor-
mance the leave-one-out retraining, which means that each
time we unlearn one data cluster. Thus, for unlearning the
data cluster D, the errors of our proposed reverse gradient
matching can be denoted as:
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where 1 < k < K and S, is corresponding synset that
matches the data cluster D,; with reverse gradients. And de-
note X, as the corresponding synset that matches the data
cluster D,, with normal gradients, then the accumulated er-
rors could be denotes as:
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which, compared with Eq. 12, introduces an additional sum-
mation operation, resulting in larger accumulated error val-
ues.

7. Experimental Setting

The experimental setting of the proposed DDM framework
is depicted in Table 5, where the dataset information, net-
work backbones (ConvNet, AlexNet, ResNet and Simple
Vit) are listed. Two different distance functions Dist(-) are
utilized in Eq. 6 of the main paper.

8. More Experiments
8.1. Class-wise DDM vs Cluster-wise DDM

In our proposed DDM framework, both the class-wise and
the cluster-wise synthetic images are obtained for efficient
tracing by hierarchical search (details in Sec. 6.2). In
Fig. 6, we depict the tracing results (got by Eq. 11) with
the most influential datapoints in terms of Dist;, with
| X:]] = 1 (‘one image inference’ with groundtruth label
as 5”) and || X;|| = 256 (‘a batch of images inference’ with



Table 5. The detailed settings in the experimental implementation.

Dataset Network Settings
Irnet Iriimg Training Epochs  Step for Synset  Step Length Dist
MNIST ConvNet/AlexNet/ResNet  0.001 0.1 30 50 4 Cosine Dist
Simple ViT 0.001  0.005 30 50 4 MSE
CIFARI0 ConvNet/AlexNet/ResNet  0.01 0.1 30 50 4 Cosine Dist
Simple ViT 0.01 0.005 30 50 4 MSE
ConvNet/AlexNet/ResNet  0.01 0.1 30 50 4 Cosine Dist
CIFARI00 Simple ViT 0.01 0.005 30 50 4 MSE
TinvImeNet ConvNet/AlexNet/ResNet  0.01 0.1 30 50 4 Cosine Dist
yime Simple ViT 0.01 0.005 30 50 4 MSE

Figure 5. Visualization of condensed 10 image/class with ConvNet for TinyImageNet dataset. We compare the visualization results
between gradient matching (GM) and reverse gradient matching (DDM). In each visualization, each column represents a condensation of

a cluster.
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Figure 6. Locating the most influential data points, where the
results are computed with distance function Dist; on CIFAR10
dataset. We firstly locate the class with the class-wise synset and
then to the cluster with the cluster-wise synset of that class.
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Figure 7. Comparing the empirical error between the exact unlearn
model and the DDM model. We scale and flip ‘exact unlearn’ for
better visual comparison.

all groundtruth labels as 2’). As can be observed, both the
class-wise tracing and cluster-wise tracing give consistent
tracing results. In addition, DDM works on both the sin-
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Figure 8. Comparison of the training data attribution matrix with different initializations. The experiments are conducted on MNIST,
CIFAR-10 and CIFAR-100 datasets, with the ConvNet as the base network.

gle image inference (gt label belongs to the 5-th label) and
multi-image inference cases (all gt labels belong to the 2-th
label). indicating the robustness of the DDM framework.

8.2. More Visualization Results

In Fig. 4 of the main paper, we visualize the synset on
MNIST dataset and CIFAR-100 dataset. Here, we pro-
vide additional visualization results on the TinylmageNet
dataset, as depicted in Fig. 5.

The figure provides additional evidence supporting the
privacy protection capabilities of our proposed DDM, as
the synsets exhibit no recognizable objects. Moreover, the
uniqueness of synthetic images learned from each data clus-
ter highlights the importance of the clustering operation.

8.3. Comparing DDM for Machine Unlearning with
Exact Unlearn

As discussed in the method section, we optimize the syn-
thetic images using the proposed reverse gradient matching,
which are then employed to fine-tune the target network to
mitigate the impact of specific data clusters. It’s important
to note that we don’t anticipate the DDM framework to per-
fectly mimic the exact unlearned model. Instead, our focus
is on whether it can capture important characteristics of the
model. In this experiment, we use empirical error for com-
parison, as depicted in Fig. 7. In the figure, we scale and
flip ‘exact unlearn’, which, in an ideal situation, should be
symmetric to ‘DDM’. As observed, they are roughly sym-
metrical, indicating that the DDM models can serve as a
surrogate for analyzing the target model and perform well
in eliminating certain data points compared to the exact un-
learn.

8.4. How Did Different Initializations Influence the
Network?

Here, we investigate the impact of different initializations

on the computed training data matrix. We perform this com-

parative experiment on the MNIST, CIFAR-10, and CIFAR-

100 datasets trained using the ConvNet architecture. We

consider three different initializations: ‘Kaiming’ (ini-1),

‘Normal’ (ini-2), and ‘xavier’ (ini-3).

The experimental results are illustrated in Fig. 8, reveal-
ing the following observations:

* The training data attribution is robust across different ini-
tialization methods, yielding similar attribution matrices.
This observation holds true for the MNIST, CIFAR-10,
and CIFAR-100 datasets.

* With an increase in the size of the training data, the at-
tribution matrices learned from the three different initial-
izations become more diverse. This divergence may arise
from the selection of the basic ConvNet as the backbone,
potentially leading to local optima.

9. DDM for Analysis of Other Model Behaviors

In the main paper, we detailed instructions on analyzing
networks by identifying the most influential training data
for certain test images. We emphasize that both the local
and global behaviors of the network can be captured by the
training data matrix when using specific distance functions
defined by the certain evaluation objective.

Here, we present various distance functions for different
evaluation objectives.

9.1. Inference Function of Certain Test Samples

The distance function is defined in Eq. 10 in the main paper.
This function aims to identify which part of the training data
is responsible for the final prediction. We provide different



Table 6. Detecting noisy training data for the target network. We
add random noise with perturbation norm of 0.1 to each image.

Percentage 0% 10% 20% 30% 40%

Random Select 784  70.5 68.8 61.3 55.7
DDM 784 820 793 736 70.1

evaluation objectives, including those influencing the cur-
rent predictions most/least and those contributing the most
to making correct predictions.

And the corresponding experiments have been listed in
the main paper in Table 1.

9.2. Model Diagnostic for Low-quality Training
Samples

To identify essential part of data that contributes to the over-
all prediction ability. We have already displayed the cor-
responding experiments in Table 3 by sorting the training
cluster with its influence to the final network performance.
To be specific, we randomly choose part of training data as
the validation set V, then we could determine distance func-
tion for the model global performance evaluation as:

> Disty(ay), (14)
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where Dists is pre-defined in Eq. 10 for identifying those
with the most influence on whether the model makes correct
predictions.

In addition to the previous experiment focused on re-
moving locally low-quality data from the training set, we
conducted an additional experiment involving the introduc-
tion of random noise to 20% of the training data. Subse-
quently, we removed the data based on the evaluation ob-
jectives mentioned earlier.

The experimental results are presented in Table 6. The
table reveals that the addition of random noise has a detri-
mental effect on the performance of the target model. How-
ever, when selectively removing data based on our proposed
DDM, the network’s performance improves, demonstrating
a more significant improvement compared to the ‘Random
Select’ approach.

9.3. Transferability Between Different Networks.

And we also find that our proposed DDM also provides to
measure and improve the transferability between different
networks. To be concrete, in the typical work like knowl-
edge distillation, the student network can be trained by:

Etotal = (1 - O‘) : Lce(N('r)a yt) +a- IC[’(N('T)a M(JE)),

(15)
where N represents the student network to be trained, M is
the target network, CL denotes the KL-divergence, and « is

Table 7. DDM for network tranferability while distillation.

Percentage 0% 10% 20% 30% 40%

Random Select 94.1 935 88.7 87.3 85.8
DDM 941 942 942 929 873

the balancing weight. It is important to note that not all net-
works may experience performance improvement through
such distillation, as there could be conflicts that hinder the
overall performance enhancement.

We use the KL-divergence as the distance function and
calculate the whole evaluation distance in the similar way as
in Eq. 14. The experiments are conducted on Table 7. In the
table, we delete some percentages of data from the network
training and distill it to train the student network. The exper-
iments are conducted on CIFAR-10 dataset on ResNet-18,
and the teacher network is optimized by knowledge undis-
tillation. Thus, directly distill from the teacher would cause
accuracy drop. And deleting some samples from the train-
ing data could attack such knowledge distillation and im-
prove the network performance.

9.4. To be Explored.

In this paper, we distilled the training gradients to several
synthetic images, which enables the fast impact elimina-
tion. Thus, it is possible to build the training data attributes
with the distance function defined between networks, which
shows great potential to explore other kinds of network be-
haviors.



