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Supplementary Material

In supplementary material, we first provide a summary of
all notations mentioned in the main body for a clear under-
standing of the paper, as shown in Table A.1. Then, we make
a deep analysis of the adaptive one-hot loss function, includ-
ing the theoretical justification of its effectiveness (Appendix
A). In addition, we demonstrate the necessity of activating
variance regularization with the tangent function from the
lens of optimization space (Appendix B). Then, we introduce
the implementation details of our experiments on different
baseline models (Appendix C). Finally, we provide more
experimental analyses (Appendix D, E, and F). Our code is
available at https://github.com/HankYe/Once-
for-Both.

A. Motivation behind Entropy and Variance
Regularizations

In this section, we take a deep dive into the design of the
adaptive one-hot loss function, which targets discretizing
each pi into a one-hot vector. Considering the inaccessible
one-hot index in the search process (Sec. 3.3), the optimiza-
tion objective of pi should adapt to potential members in
a one-hot vector group according to the search results of
other submodules. For example, the sparsity target of one
submodule can change from [0, 0, 1, 0] to [0, 1, 0, 0] if
other pruned submodules contribute to a small computation
reduction. Our method employs an adaptive one-hot loss
function to learn members’ invariant and unique properties
within a one-hot vector group, fulfilling the optimization
objectives.

First, we present two learnable properties of the one-hot
vector set: entropy H(pi) and variance σ(pi). Focusing
on the i-th dimension in the normalized α using softmax,
denoted as pi, we establish a theorem revealing the unique
relationship between H(pi), σ(pi), and the set of one-hot
vectors.

Theorem 1. Suppose pi ∈ R1×D and
∑D

k=1 pik = 1, with
pik ≥ 0, k = 1, 2, ..., D. Then the following propositions are
equivalent:

(1) H(pi) = −
∑D

k=1
pik log pik = 0; (A.1)

(2) σ (pi) =
∑D

k=1
(pik − p̄)2/D = (D − 1) /D2; (A.2)

(3) pi ∈ {ek} , k = 1, 2, ..., D, (A.3)

where ek represents the D-dimensional one-hot vector with the
k-th element set to one.

Proof. We prove the equivalence by demonstrating A.1 ⇔
A.3 and A.2 ⇔ A.3.

As for the former equivalence, given that pi ∈ {ek}, the
entropy of pi can be easily computed as zero, thus A.3 ⇒
A.1. Then we prove that A.1 ⇒ A.3. Since pi is constrained
by
∑D

k=1 pik = 1, we construct a Lagrange function L(pi, λ)
as follows:

L(pi, λ) = H(pi) + λ(1−
∑D

k=1
pik), (A.4)

where λ is the Lagrange multiplier. Now, we analyze the
extremum and monotonicity of L(pi, λ) by taking partial
derivatives with respect to pik and λ, as shown in Eq. (A.5).

∂L

∂pik
= −1− λ− log pik, k = 1, 2, ..., D. (A.5)

By setting each partial derivative to zero, we can ob-
tain that: λ = logD − 1, pik = D−1, k = 1, 2, ..., D.
If 0 < pik < D−1, then ∂L/∂pik = − log(Dpik) >
0, k = 1, 2, ..., D. Similarly, if D−1 < pik < 1, then
∂L/∂pik = − log(Dpik) < 0, k = 1, 2, ..., D. Conse-
quently, H(pi) is monotone increasing if 0 < pik < D−1

and monotone decreasing if D−1 < pik < 1 in the di-
mension of pik. Therefore, H(pi) reaches maximum as
logD when pi = D−111×D, and reaches the minimum as
zero when pik ∈ {0, 1}, k = 1, 2, .., D. In other words,
H(pi) = 0 holds only if pi ∈ {ek}, k = 1, 2, ..., D. There-
fore, H(pi) = 0 ⇒ pi ∈ {ek}, i.e., A.1 ⇒ A.3. Finally, we
can get the conclusion that A.1 is equivalent to A.3.

As for the latter equivalence, A.2 ⇔ A.3, the proof is
similar and thus omitted here.

Based on the analysis, the entropy and variance regular-
ization of pi can effectively drive it towards a one-hot vector,
discretizing both pik and the sparsity score V as binary.

Having demonstrated the effectiveness of both regulariza-
tion items, another question is why both regularization items
should be employed. To answer this question, we analyze
the respective contribution of the entropy and variance reg-
ularization items to the discretization process, making the
following observations.

Theorem 2. Let ∥H(pi)− 0∥ and ∥σ(pi)− (D − 1)/D2∥ de-
note the regularization items for entropy and variance, respectively.
Then, the following properties hold:
(1) ∥H(pi)− 0∥ works as ℓ1 sparsity for pi, guiding pi towards a
potential one-hot vector;
(2) ∥σ(pi)− (D − 1)/D2∥ works as ℓ2 smoothness for pi, facil-
itating a seamless transition from one potential target vector to
another.

https://github.com/HankYe/Once-for-Both
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Symbol Notation Symbol Notation
N supernet m bi-mask
A search space λ(t) time-varying weight coefficient
W supernet weights i the submodule index
Fd decoder j the unit index
D dataset α architecture parameters
f importance criterion p the normalized architecture score
S importance score ∆ search step
V sparsity score M submodule number in N

Lval validation loss σ measured variance of p
Ltrain training loss σt target variance of p
LS regularization item for S ω normalized variance of p
LV regularization item for V µ1, µ2 weight coefficients in LV
Lrec reconstruction loss µ3 weight coefficient in LS
Lm regularization item for m p̄ mean of p
R(p) regularization item for p η scaling factor
g computation cost γ masking ratio
τ resource constraint ∆T pruning interval

Table A.1. Notation Summary.

Proof. We first derive the approximate order of two items
to identify regularization types. Then we analyze the func-
tion of each regularization from the lens of the optimization
space.

As for entropy regularization, since H(pi) ≥ 0, the regu-
larization can be simplified as H(pi). Further, according to
[30], H(pi) can be regarded as the first-order entropy of the
distribution pi, as shown in Eq. (A.6).

H (pi) = lim
r→1

Hr (pi) = lim
r→1

1

1− r
log

(
D∑

k=1

prik

)
, (A.6)

where Hr (pi) is the generalized entropy measure, Rényi
Entropy. Therefore, ∥H(pi) − 0∥ can be regarded as ℓ1
sparsity for the discrete distribution of pi.

As for variance regularization, since σ(pi) ≤ (D− 1)/D2,
the regularization can be simplified as (D − 1)/D2 − σ(pi).
Further, we expand σ(pi) into the polynomial form as fol-
lows:

D − 1

D2
− σ(pi) =

D − 1

D2
−
∑D

k=1 p
2
ik − 2

D

∑D
k=1 pik + 1

D

D

=
D − 1

D2
−
∑D

k=1 p
2
ik − 1

D

D

=
1

D

(
1−

∑D

k=1
p2ik

)
.

(A.7)
From Eq. (A.7), minimizing (D − 1)/D2 − σ(pi) can

be regarded as maximizing ℓ2-norm of pi. Therefore, the
variance regularization cannot be viewed as the ℓ2 sparsity.
Instead, compared with entropy regularization, we argue that
variance regularization works as ℓ2 smoothness.

Specifically, we visualize the distributions of entropy and
variance regularization in Fig. A.1. Considering the normal-
ization constraint, we focus on the two-dimensional setting

of pi to simplify the analysis. From the figure, we observe
that variance regularization distribution is flatter than entropy
regularization in the region neighboring the maximum point.
With the increase in the dimensionality of pi, the entropy
regularization becomes stronger (sharper peak), while the
variance regularization becomes weaker (flatter peak). Con-
sequently, the variance regularization effectively smooths
the optimization space.

Note that during optimization, entropy regularization is
sensitive to the initialization of pi, as the gradient contin-
ually drives the maximum pik towards one. This behavior
is independent of the sparsity constraint and leads to fixing
the potential one-hot index throughout the pruning process.
This issue is evident in the results of lines 1 and 5 in Table
5d and Fig. A.2. In lines 1 and 5 of Table 5d, the searched
models have the same size and are the largest among all
searched models. The bi-mask score learning process in
Fig. A.2, which is sampled from one submodule in DeiT-
S compressed by entropy regularization alone, shows that
the bi-mask scores in different segments are continually in-
creased or decreased. Therefore, entropy regularization
mainly contributes to the score sparsity but is constrained
by the initial score distribution.

In contrast, variance regularization is agnostic to the one-
hot index and operates within a much flatter optimization
space than entropy regularization. This characteristic allows
variance regularization to adaptively adjust the target one-hot
vector based on the search results of other submodules or
units. Fig. A.3 visualizes the bi-mask score learning process
from the same submodule as in Fig. A.2, employing the
same compression target. The scores in the box initially
increase and gradually decrease after the pruning of other
units, indicating a switch in the target one-hot vector from



Figure A.1. Visualization of entropy and
variance regularization distributions under
the two-dimension pi setting for simplic-
ity.
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Figure A.2. Visualization of the learn-
ing process of one bi-mask sampled from
the compression of DeiT-S with the target
sparsity of 1BFLOPs and without variance
regularization.
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Figure A.3. Visualization of the learn-
ing process of one bi-mask sampled from
the compression of DeiT-S with the target
sparsity of 1BFLOPs and without entropy
regularization.

[0, 0, 1, 0, 0, 0, 0] to [1, 0, 0, 0, 0, 0, 0]. Additionally, the
results in lines 2 and 4 of Table 5d demonstrate that mod-
els compressed solely with variance regularization achieve
the smallest model size (4.0MParams, 0.8BFLOPs) while
satisfying the sparsity constraint. Hence, variance regular-
ization primarily contributes to a smoother optimization
space, enabling easier adjustment of the target one-hot
vector to align with the pruning process of other units
and the desired sparsity constraint.

In summary, we demonstrate the effectiveness and neces-
sity of both entropy and variance regularization items from
the lens of equivalent properties, regularization types, and
optimization contributions.

B. Motivation behind Tangent Activation for
Variance Regularization

As mentioned earlier, applying ℓ1 regularization to the dis-
crete variable pi and continuous variable S enhances model
sparsity while maintaining model performance. This obser-
vation is also supported by the results in Table 5d (lines 1, 5,
6, and 7).

Now, let’s delve into the explanation for why we use
tangent to map the variance regularization. This choice is
primarily motivated by the over-smoothness present in the
high-dimensional optimization space during the early search
process. To better understand this, we analyze the regulariza-
tion strength in the high-dimensional optimization space. In
particular, we focus on scenarios where the dimensionality D
is much larger than 2 (D >> 2). In such cases, the maximum
strength of (D−1)/D2−σ(pi), which equals (D−1)/D2, is
very close to the minimum strength of zero. As a result, the
gradient of the variance regularization becomes extremely

Figure A.4. Distribution of tangent-activated variance regulariza-
tion.
small compared to the gradient of the entropy regulariza-
tion. Consequently, the impact of variance regularization
on searching for the potential target one-hot vector becomes
minimal, as the gradient of variance regularization is over-
whelmed by that of entropy regularization.

To solve this problem, we propose utilizing tangent acti-
vation to produce a large gradient during the search for the
potential target one-hot vector under the performance and
sparsity objectives. Specifically, we design the activation as
follows:

Ψ(pi) = tan
(π
2
− πωi

)
, (A.8)

where ωi = σi/σ
t
i ∈ [0, 1] as mentioned in the main body.

The distribution of Ψ(pi) is presented in Fig. A.4, where Ψ

rapidly decreases when ωi is close to zero, i.e., σi is close to
zero. In other words, if the variance of pi is small, referring
to the initial distribution of pi or the distribution after prun-
ing small-score units, we will assign a larger gradient for



Figure A.5. Attention maps from different models for several images sampled from ImageNet-1K. The first row is the original images, the
second row represents visualizations from DeiT-S, and the third row denotes the results from DeiT-B_3.6BFLOPs.

variance regularization than entropy one. This prioritization
allows for faster optimization of pi towards the potential
target one-hot vector under the performance and sparsity
objective. By doing so, we prevent entropy regularization
from dominating the optimization process and ensure the
target one-hot vector can be dynamically adjusted.

Once the potential target one-hot vector is found, the op-
timization process should prioritize entropy regularization.
This is because entropy regularization, as an approximate ℓ1
sparsity measure, can promote sparsity in pi while maintain-
ing model performance. Therefore, the gradient of variance
regularization can be suppressed to minimize interference
from other one-hot objectives. When the distribution of pi
is close to a one-hot vector, meaning ωi is close to one, the
significant gradient of Ψ can facilitate the discretization of pi
in the same optimization direction as entropy regularization.
In this situation, the disturbance caused by variance regular-
ization from other one-hot objectives is typically negligible.

Based on the above analysis, the main contribution of
tangent activation is providing a large gradient to adjust
the potential target one-hot vector of pi that satisfies the
compression requirement every time the small-score units in
pi are pruned. Therefore, as validated in lines 1, 6, 5, and 7
of Table 5d, the variance regularization Ψ(pi) can drive the
model to approach the target sparsity more closely and more
efficiently.

C. Implementation Details
OFB adopts the searching-and-retraining scheme as previous
works do. All experiments are conducted with 8 V100 GPUs.
In the search process, we use the pre-trained models released
from official implementation on ImageNet-1K as the su-
pernet N . The decoder Fd consists of one convolutional

layer and a pixel-shuffle layer as SimMIM [39] does. We
search for 100 epochs on DeiT-S and Swin-Ti, and 200 on
DeiT-B, with 20 epochs for warming up. The other learning
schedules and the augmentation strategy follow the official
settings in the respective papers. The learning schedules of
α, S and Fd shares the same setting as W , except that β1

is set as 0.5 for the optimizer of {α,S}. The default values
of µ1, µ2, µ3, and η are set as 5e-1, 1e2, 2e-5, and 2e-1, re-
spectively. The unit pruning is initiated at every one-third
interval (∆T) within each epoch. In the retraining process,
we follow the default training strategy reported in official
papers except for mixup [45] and cutmix [44], which impair
the retraining performance in our setting, and the learning
rate is set as 6e-4 for both types of models. The masking
ratio linearly increases from 1% to 25% of the input patches
for DeiTs and that of the downsampled patches for Swin-Ti
during the search stage.

D. Additional Attention Map Visualizations

We take DeiT-B_3.6BFLOPs as an example to compare the
attention maps with DeiT-S, which shares the same depth as
DeiT-S and has higher performance but with smaller FLOPs
and parameters. We adopt the method introduced in [3] to vi-
sualize the attention maps from the output layer. The results
are shown in Fig. A.5. From the figure, it can be observed
that the compressed model focuses more on the extraction of
class-specific contextual information, meanwhile suppresses
some useless information, e.g., the background features in
the picture of the fifth column. This indicates that OFB can
effectively evaluate the prunability of units in different sub-
modules and finally preserve useful and important units to
perform high compression performance.



Case (w/o rt.) Top-1 (%) FLOPs (B) #Param (M)
Uniform init 63.5 0.6 3.0
Random init 72.8 1.1 5.3

Table A.2. Inductive bias analysis.

Model Top-1 (%) Top-5 (%) FLOPs (B)
ResNet50 76.2 92.9 4.1
DepGraph [13] 75.8 - 2.0
OFB 75.8 92.6 1.6

Table A.3. Generalization Performance on ResNet-50.

E. Inductive Bias Analysis
We further explore the impact of inductive bias on the search
performance. As shown in Table. A.2, with the same
computation constraint, despite the smaller model size, the
uniformly-initialized search space performs poorly in model
performance, while the randomly-initialized one can achieve
better tradeoff between model performance and compression
budget, demonstrating the negative impact of inductive bias
in the initialization of model parameters.

F. Generalization Ability on CNNs
To test the generalization ability of OFB, we apply it to
compressing ResNet-50 on ImageNet. As shown in Ta-
ble A.3, compared with baseline and SOTA models, OFB
achieves comparable performance with higher compression
ratio, which further demonstrates the superiority of OFB in
generalization ability.
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