
Appendix for Online Task-Free Continual
Generative and Discriminative Learning via

Dynamic Cluster Memory

March 29, 2024

Contents

A Additional information for the related work 2

B Additional information for experiment settings 4

B.1 The hyperparameter configuration 4

B.2 Evaluation and dataset setting . 6

C Additional experiment results and ablation studies 8

C.1 Visual results . 8

C.2 The memory size . 9

C.3 The dynamic expansion process . 10

C.4 Dynamic expansion signals . 11

C.5 The performance of the proposed model when changing λ. 12

C.6 The time required for the memorisation operations 14

C.7 The maximum number of samples in the memory cluster 15

C.8 Training other types of generative models using DCM 16

C.9 Additional information for the classification task 17

C.10 The selection process of λ . 19

1

A Additional information for the related work

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 1: The generation results of various models on Split MNIST.

Denoising Diffusion Probabilistic Models (DDPMs) (18) is a recent popular gen-

erative model, which has achieved excellent performances in image synthesis applica-

tions (7; 13; 19). Different from other kinds of generative technologies such as GANs

and VAEs, which have a fast generation process in which an image can be directly yield

from a noise vector, the DDPM generative processing involves a considerable number

of optimization iterations, resulting in a heavy computational requirement. This weak-

ness inspires many attempts to develop several solutions to accelerate the generation

process of the DDPM. These works usually focus on performing the diffusion pro-

cess in a low-dimensional latent space (16) or shortening the reverse diffusion steps

(3; 10; 17; 19; 21; 24). The proposed Dynamic Cluster Memory (DCM) can also be

used in these improved DDPMs to enable them for task-free continual learning, which

will be investigated in our future work.

2

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 2: The generation results of various models on Split Fashion.

Although the DDPM models have achieved remarkable results in various applica-

tions, their performance is relying on learning from large-scale datasets. When training

a DDPM model in continual learning, it will quickly forget how to generate past im-

ages. One attempt to apply the DDPM model in continual learning was proposed in

(4), which employs the DDPM model as a generative replay network. A similar idea

was proposed in (8), which employs the diffusion model for distillation and replay.

However, these approaches require huge computing costs for the generative replay

process. In addition, these approaches are designed for task-aware continual learning,

which cannot be used in a more realistic setting such as the Online Task-Free Continual

Learning (OTFCL) (1)). In contrast, the proposed DCM can train a DDPM model in

an efficient way under OTFCL without requiring the sampling process of the DDPM

and supervised signals.

3

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 3: The generation results of various models on Split SVHN.

B Additional information for experiment settings

In this section, we provide detailed experiment information, including the model’s hy-

perparameters, datasets and network architecture.

B.1 The hyperparameter configuration

The hyperparameter configuration and GPU hardware. In the experiments, we adopt

Adam (9) optimization algorithm with a learning rate of 0.0001 for training all models.

In addition, we use a Tesla V100 GPU in the experiments while using the operating

system (Ubuntu 18.04.5). For the proposed DCM-JS, the threshold (λ in Eq.(10) of

the paper) for Split MNIST, Split Fashion, Split SVHN and Split CIFAR10 is 40. We

also adopt the threshold λ = 20 for the DCM-JS for other datasets. For the proposed

DCM-JS, the threshold λ for all datasets is 2000.

4

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 4: The generation results of various models on Split CIFAR10.

Network architectures. In the experiments, we employ the neural network from (15),

which is a U-net architecture for implementing the diffusion model. We describe the

neural network information of other methods in the following. We implement the infer-

ence mode lof the VAE framework by using a convolutional network consisting of five

layers with 32, 64, 128, 256 and 512 units. We also add two separate fully connected

layers where each layer has 128 units on the bottom of the inference model. We imple-

ment the decoder of the VAE framework by using a convolutional network consisting

of six layers with 512, 256, 128, 64, 32 and 3 units. For the GAN-based framework,

we implement the generator using using a ResNet architecture (5) consisting of four

residual blocks. Each block has three convolutional layers with 256, 256 and 256 units.

We also implement the GAN’s discriminator by using a ResNet architecture consisting

of four residual blocks. The final layer of the discriminator is implemented using a

fully connected layer that outputs a single value.More detailed information about neu-

5

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 5: The generation results of various models on CelebA to Chair.

ral networks is provided in the source code from https://github.com/dtuzi123/DCM.

B.2 Evaluation and dataset setting

Evaluation : In the image generation under unsupervised learning, we employ the FID

score (6) to evaluate the distance between 5,000 generated images and 5,000 real sam-

ples. In the classification task under supervised learning, we use the average classifica-

tion accuracy as the performance criterion.

Datasets. In the following, we introduce the detailed information for the datasets used

in the experiments.

Split MNIST. MNIST (12) is a digit dataset comprising 60,000 training and 10,000 test-

ing samples, respectively. We divide MNIST into five parts as in (2), as Split MNIST,

where each part contains samples from two different classes, .

6

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 6: The generation results of various models on Split ImageNet.

Split Fashion. Fashion (22) is a dataset which consists of a training set of 60,000 sam-

ples and a testing set of 10,000 examples. We divide Fashion into five parts as in (2),

where each part contains samples from two different classes, namely Split Fashion.

Split CIFAR10, CIFAR10 (11) is a nature image datasets that consists of 60,000 and

10,000 training and testing samples, respectively. We split CIFAR10 into five parts, as

in (2), as Split CIFAR10, where each part contains samples from two different classes.

Split SVHN. SVHN (14) is a real-world image dataset that consists of 73,257 digit

training and 26,032 digit testing samples, respectively. Let us to split SVHN into five

parts according to (2), as Split SVHN, where each part contains samples from two

different classes.

7

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 7: The generation results of various models on CelebA to CACD.

C Additional experiment results and ablation studies

In this section, we provide more ablation results to analyze the proposed DGM.

C.1 Visual results

In this section, we provide additional visual results. The generation results of various

models on Split MNIST, Split Fashion, Split SVHN and Split CIFAR10 are shown in

Fig. 1, Fig. 2, Fig. 3 and Fig. 4, respectively. The visual generation results of various

models on complex datasets are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8, respectively.

8

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 8: The generation results of various models on CelebA to ImageNet.

C.2 The memory size

In this section, we report the number of memorized samples for each approach. The

memory size of various models on Split MNIST, Split Fashion, Split SVHN and Split

CIFAR10 is reported in Table 1, which shows that the proposed DCM requires fewer

memorized samples than other models. We also provide the memory size of various

models trained on complex datasets in Table 2.

Datasets DCM-SE DCM-JS LTS LGM R-VAE R-DDPM CGKD-GAN CNDPM CGKD-WAE CGKD-VAE

Split MNIST 1408 1536 2000 2000 2000 2000 2000 2000 2000 2000
Split Fashion 1664 1664 2000 2000 2000 2000 2000 2000 2000 2000
Split SVHN 1536 1664 2000 2000 2000 2000 2000 2000 2000 2000
Split CIFAR10 1792 1792 2000 2000 2000 2000 2000 2000 2000 2000

Table 1: The number of stored samples of various models for the class-incremental
learning paradigm, achieved by various models.

9

(a) DCM-SE. (b) DCM-JS.

(c) CGKD-WAE. (d) CGKD-GAN.

Figure 9: The generation results of various models on CACD (128× 128× 3).

C.3 The dynamic expansion process

In this section, we investigate the dynamic memory allocation process using different

expansion threshold configurations. We train DCM-SE and DCM-JS on Split MNIST

with different expansion thresholds. During the training process, we record the distri-

bution (task) shift and the number of memory clusters changes at each training time,

and we plot the results in Fig. 15 and Fig. 16, respectively. We can see that a small

threshold λ encourages the proposed DCM-SE to frequently build new memory clus-

ters. A similar result can be observed in Fig. 16 for the proposed DCM-JS. In addition,

Both DCM-JS and DCM-SE can add new memory clusters to adapt to the data dis-

10

(a) DCM-SE. (b) DCM-JS.

(c) CGKD-WAE. (d) CGKD-GAN.

Figure 10: The generation results of various models on FFHQ (128× 128× 3).

tribution shift when giving an appropriate threshold. Furthermore, the best threshold

configuration for DCM-JS and DCM-SE is 2200 and 50, respectively,

C.4 Dynamic expansion signals

In this section, we investigate how the proposed approach provides signals for mem-

ory expansion during the training. We train DCM-SE and DCM-JS with different λ

thresholds on Split MNIST, and we record the signal evaluated by the left-hand side of

Eq. (10) of the paper at each training time. We plot the expansion signals, when vary-

ing λ for DCM-SE and DCM-JS in Fig. 17 and Fig. 18, respectively. We can observe

11

(a) DCM-SE. (b) DCM-JS.

(c) CGKD-WAE. (d) CGKD-GAN.

Figure 11: The generation results of various models on CelebA-HQ (128× 128× 3).

several peaks indicating expansion signals for the memory indicating when the data

distribution changes at certain training times. These results show that both square loss

and JS divergence can provide suitable signals for memory expansion.

C.5 The performance of the proposed model when changing λ.

In this section, we investigate the relationship between model performance and mem-

ory size when changing λ. We train DCM-SE and DCM-JS on Split MNIST with

different thresholds. Once the training is finished, we provide the performance (FID)

on testing samples and the number of memory clusters in Fig. 19. We can observe that

12

(a) DCM-SE. (b) DCM-JS.

Figure 12: The image generation results of various models on CACD with 256×256×
3.

(a) DCM-SE. (b) DCM-JS.

Figure 13: The image generation results of various models on CelebAHQ with 256 ×
256× 3.

(a) DCM-SE. (b) DCM-JS.

Figure 14: The image generation results of various models on FFHQ with 256×256×3.

13

0 200 400 600 800
The number of training steps

2

4

6

8

10

12

14

16

Nu
m

be
rs

Number of memory clusters
Number of distributions

(a) λ = 1700.

0 200 400 600 800
The number of training steps

2

4

6

8

10

12

Nu
m

be
rs

Number of memory clusters
Number of distributions

(b) λ = 1800.

0 200 400 600 800
The number of training steps

2

4

6

8

10

Nu
m

be
rs

Number of memory clusters
Number of distributions

(c) λ = 1900.

0 200 400 600 800
The number of training steps

2

4

6

8

10

Nu
m

be
rs

Number of memory clusters
Number of distributions

(d) λ = 2000.

0 200 400 600 800
The number of training steps

1

2

3

4

5

6

Nu
m

be
rs

Number of memory clusters
Number of distributions

(e) λ = 2100.

0 200 400 600 800
The number of training steps

1

2

3

4

5

6

Nu
m

be
rs

Number of memory clusters
Number of distributions

(f) λ = 2200.

0 200 400 600 800
The number of training steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Nu
m

be
rs

Number of memory clusters
Number of distributions

(g) λ = 2300.

Figure 15: The number of memory clusters and distributions when changing λ in
DCM-SE.

increasing the memory size does not lead to a significant improvement in the model

performance. In addition, both DCM-SE and DCM-JS can still achieve good perfor-

mance by using only five memory clusters.

C.6 The time required for the memorisation operations

Since our proposed memory system is a non-parametric approach, we can easily in-

vestigate how much time is required for the memory optimization during the training.

We learn DCM-SE and DCM-JS on Split MNIST, Split Fashion, Split SVHN and Split

CIFAR10, respectively, in which we only perform the memory optimization and do not

train the model. We provide the memory optimization time (seconds) in Fig. 20. The

empirical results show that the JS-based memory approach requires more operation

14

0 200 400 600 800
The number of training steps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
rs

Number of memory clusters
Number of distributions

(a) λ = 40.

0 200 400 600 800
The number of training steps

2

4

6

8

10

12

Nu
m

be
rs

Number of memory clusters
Number of distributions

(b) λ = 42.

0 200 400 600 800
The number of training steps

2

4

6

8

10

Nu
m

be
rs

Number of memory clusters
Number of distributions

(c) λ = 44.

0 200 400 600 800
The number of training steps

1

2

3

4

5

6

7

8

9

Nu
m

be
rs

Number of memory clusters
Number of distributions

(d) λ = 46.

0 200 400 600 800
The number of training steps

1

2

3

4

5

6

Nu
m

be
rs

Number of memory clusters
Number of distributions

(e) λ = 48.

0 200 400 600 800
The number of training steps

1

2

3

4

5

6

Nu
m

be
rs

Number of memory clusters
Number of distributions

(f) λ = 50.

Figure 16: The number of memory clusters and distributions when changing λ in
DCM-JS.

Datasets DCM-SE DCM-JS LTS LGM R-VAE R-DDPM CGKD-GAN CNDPM CGKD-WAE CGKD-VAE

CelebA-3DChair 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000
CelebA-CACD 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000
CelebA-ImageNet 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000
Split MINIImageNet 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000

Table 2: The number of stored samples of various models for the domain-incremental
learning paradigm, achieved by various models.

times than The QL-based method. However, both DCM-SE and DCM-JS are efficient

memory approaches.

C.7 The maximum number of samples in the memory cluster

In this section, we investigate whether the number of samples for each memory clus-

ter can significantly affect the memory expansion process and model performance. We

train both DCM-QL and DCM-JS on Split MNIST using different π configurations (the

maximum number of samples for each memory cluster), where we set λ = 2000 and

λ = 42 for DCM-QL and DCM-JS, respectively. We provide the results in Fig. 21,

which shows that changing the memory cluster size does not lead to a significant

change in the model performance and the number of memory clusters.

15

0 200 400 600 800
The number of training steps

1400

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(a) λ = 1700.

0 200 400 600 800
The number of training steps

1400

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(b) λ = 1800.

0 200 400 600 800
The number of training steps

1400

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(c) λ = 1900.

0 200 400 600 800
The number of training steps

1400

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(d) λ = 2000.

0 200 400 600 800
The number of training steps

1400

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(e) λ = 2100.

0 200 400 600 800
The number of training steps

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(f) λ = 2200.

0 200 400 600 800
The number of training steps

1600

1800

2000

2200

2400

2600

Th
e

ex
pa

ns
io

n
sig

na
ls

(g) λ = 2300.

Figure 17: The memory expansion signals when changing λ in DCM-SE.

C.8 Training other types of generative models using DCM

Since the proposed DCM does not interact with the model’s optimization during the

training, we can directly employ the proposed DCM to train different generative models

under OTFCL without modifications. In this section, we train the VAE and GAN using

the proposed DCM-SE on Split MNIST, respectively, called DCM-SE-VAE and DCM-

SE-GAN. We provide the results in Tab. 3, which show that the proposed DCM-SE

can also train other models well while training the diffusion model can achieve the best

performance.

16

0 200 400 600 800
The number of training steps

30

35

40

45

50

55

60

Th
e

ex
pa

ns
io

n
sig

na
ls

(a) λ = 40.

0 200 400 600 800
The number of training steps

30

35

40

45

50

55

60

Th
e

ex
pa

ns
io

n
sig

na
ls

(b) λ = 42.

0 200 400 600 800
The number of training steps

30

35

40

45

50

55

60

Th
e

ex
pa

ns
io

n
sig

na
ls

(c) λ = 44.

0 200 400 600 800
The number of training steps

35

40

45

50

55

60

Th
e

ex
pa

ns
io

n
sig

na
ls

(d) λ = 46.

0 200 400 600 800
The number of training steps

35

40

45

50

55

60

Th
e

ex
pa

ns
io

n
sig

na
ls

(e) λ = 48.

0 200 400 600 800
The number of training steps

35

40

45

50

55

60

Th
e

ex
pa

ns
io

n
sig

na
ls

(f) λ = 50.

Figure 18: The memory expansion signals when changing λ in DCM-JS.

Datasets DCM-SE DCM-JS DCM-SE-VAE DCM-SE-GAN

Split MNIST 28.57 30.63 45.23 38.76

Table 3: Image generation performance using the Fréchet Inception Distance score
(FID) for class-incremental learning.

C.9 Additional information for the classification task

Following from (23), we design a dynamic expansion model in which each component

has a VAE model Ai = {pϕi (x | z) , qφi (z |x) || p (z)} and a classifier fθi(x), where

i represents the component index. The primary role of the VAE model is to check the

network expansion during the training and component selection at the testing phase.

Then we design a simple but effective dynamic expansion criterion at ti as :

min{fMMD(Z
′
j ,Zi) | j = 1, · · · , k − 1} > λexpansion , (1)

17

5

10

15
N

 o
f c

lu
st

er
s

1700 1800 1900 2000 2100 2200 2300
Thresholds

0

10

20

30

FI
D

(a) DCM-SE.

10

15

20

N
 o

f c
lu

st
er

s

30 40 42 44 46 48 50
Thresholds

0

10

20

30

FI
D

(b) DCM-JS.

Figure 19: The number of memory clusters and the model performance when changing
λ.

Split MNIST Split Fashion Split SVHN Split CIFAR10
Datasets

0

100

200

300

400

Ti
m

es
 (s

ec
on

ds
)

DCM-
DCM-JS

SE

Figure 20: The time required for the memory optimization during the training.

where fMMD(·, ·) is the Maximum Mean Discrepancy (MMD) (20) and λexpansion is

a threshold used to control the model expansion. fMMD(·, ·) is defined as :

fMMD(Z
′
j ,Zi) =

1

b(b− 1)

∑b

a̸=g

{
f(zia, z

i
g)

+ f(z′
j
a,x

′j
g)− f(zia, z

′j
g)

− f(z′
j
g, z

i
a)
}
,

(2)

where Z′
j = {z′j1, · · · , z′

j
b} are the latent variables generated using the VAE model of

the j-th component, where b = 10 is the batch size. Zi = {zi1, · · · , zib} are the latent

variables generated using the encoder qφk
(z |x) by the current component (the k-th

component) that receives the data batch Xi at ti.

18

0.0

2.5

5.0

7.5

10.0
N

 o
f c

lu
st

er
s

32 64 80 96 128
Maximum number of samples for memory cluster

0

10

20

30

FI
D

(a) DCM-SE.

0

5

10

N
 o

f c
lu

st
er

s

32 64 80 96 128
Maximum number of samples for memory cluster

0

10

20

30

FI
D

(b) DCM-JS.

Figure 21: The model performance and the number of memory clusters when changing
the maximum number of samples for each memory cluster.

C.10 The selection process of λ

Since the proposed dynamic expansion mechanism defined by Eq. (10) of the paper,

only accesses the training samples provided at each learning time, we can calculate and

observe the expansion signal (left-hand-side of Eq. (10) of the paper) at each learn-

ing time. We consider a suitable hyperparameter range ([1700, 2300] and [30, 50]) for

DCM-SE and DCM-JS according to the expansion signals, respectively. The expan-

sion signal results are provided in Appendix-C4. Then the optimal hyperparameter is

searched within the hyperparameter range while a small validation set (200 data sam-

ples) is used to evaluate the performance.

References

[1] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning.

In Proc. of IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pages 11254–

11263, 2019. 3

[2] Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online

from non-stationary data streams. In Proc. of the IEEE/CVF International Conference on

Computer Vision (ICCV), pages 8250–8259, 2021. 6, 7

[3] Kamil Deja, Anna Kuzina, Tomasz Trzcinski, and Jakub Mikolaj Tomczak. On an-

19

alyzing generative and denoising capabilities of diffusion-based deep generative mod-

els. In Advances in Neural Information Processing Systems (NeurIPS), arXiv preprint

arXiv:2206.00070, 2022. 2

[4] Rui Gao and Weiwei Liu. DDGR: continual learning with deep diffusion-based generative

replay. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan

Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning,

ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of

Machine Learning Research, pages 10744–10763. PMLR, 2023. 3

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 770–778,

2016. 5

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local Nash equilib-

rium. In Proc. Advances in Neural Information Processing Systems (NIPS), pages 6626–

6637, 2017. 6

[7] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-

vances in Neural Information Processing Systems (NeurIPS), 33:6840–6851, 2020. 2

[8] Quentin Jodelet, Xin Liu, Yin Jun Phua, and Tsuyoshi Murata. Class-incremental learning

using diffusion model for distillation and replay. In Proc. of the IEEE/CVF International

Conference on Computer Vision, pages 3425–3433, 2023. 3

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc.

Int. Conf. on Learning Representations (ICLR), arXiv preprint arXiv:1412.6980, 2015. 4

[10] Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv

preprint arXiv:2106.00132, 2021. 2

[11] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Technical report, Univ. of Toronto, 2009. 7

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proc. of the IEEE, 86(11):2278–2324, 1998. 6

20

[13] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for

improved sampling speed. arXiv preprint arXiv:2101.02388, 2021. 2

[14] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in

natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning

and Unsupervised Feature Learning, 2011. 7

[15] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic

models. In Proc. of the International Conference on Machine Learning (ICML), vol. PMLR

139, pages 8162–8171, 2021. 5

[16] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-

mer. High-resolution image synthesis with latent diffusion models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–10695,

2022. 2

[17] Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffu-

sion models. arXiv preprint arXiv:2104.02600, 2021. 2

[18] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-

supervised learning using nonequilibrium thermodynamics. In International Conference

on Machine Learning (ICML), pages 2256–2265. PMLR 37, 2015. 2

[19] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit mod-

els. In International Conference on Learning Representations (ICLR) arXiv preprint

arXiv:2010.02502, 2021. 2

[20] Ilya O Tolstikhin, Bharath K Sriperumbudur, and Bernhard Schölkopf. Minimax estima-

tion of maximum mean discrepancy with radial kernels. Advances in Neural Information

Processing Systems, 29:1930–1938, 2016. 18

[21] Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou.

Diffusion-gan: Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022. 2

[22] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmark-

ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 7

[23] Fei Ye and Adrian G. Bors. Continual variational autoencoder learning via online coopera-

tive memorization. In Proc. European Conference on Computer Vision (ECCV), vol. LNCS

13683, pages 531–549, 2022. 17

21

[24] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion

probabilistic models and diffusion-based adversarial auto-encoders. In International Con-

ference on Learning Representations (ICLR), arXiv preprint arXiv:2202.09671, 2023. 2

22

