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A Additional information for the related work

(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 1: The generation results of various models on Split MNIST.

Denoising Diffusion Probabilistic Models (DDPMs) (18) is a recent popular gen-

erative model, which has achieved excellent performances in image synthesis applica-

tions (7; 13; 19). Different from other kinds of generative technologies such as GANs

and VAEs, which have a fast generation process in which an image can be directly yield

from a noise vector, the DDPM generative processing involves a considerable number

of optimization iterations, resulting in a heavy computational requirement. This weak-

ness inspires many attempts to develop several solutions to accelerate the generation

process of the DDPM. These works usually focus on performing the diffusion pro-

cess in a low-dimensional latent space (16) or shortening the reverse diffusion steps

(3; 10; 17; 19; 21; 24). The proposed Dynamic Cluster Memory (DCM) can also be

used in these improved DDPMs to enable them for task-free continual learning, which

will be investigated in our future work.
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 2: The generation results of various models on Split Fashion.

Although the DDPM models have achieved remarkable results in various applica-

tions, their performance is relying on learning from large-scale datasets. When training

a DDPM model in continual learning, it will quickly forget how to generate past im-

ages. One attempt to apply the DDPM model in continual learning was proposed in

(4), which employs the DDPM model as a generative replay network. A similar idea

was proposed in (8), which employs the diffusion model for distillation and replay.

However, these approaches require huge computing costs for the generative replay

process. In addition, these approaches are designed for task-aware continual learning,

which cannot be used in a more realistic setting such as the Online Task-Free Continual

Learning (OTFCL) (1)). In contrast, the proposed DCM can train a DDPM model in

an efficient way under OTFCL without requiring the sampling process of the DDPM

and supervised signals.
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 3: The generation results of various models on Split SVHN.

B Additional information for experiment settings

In this section, we provide detailed experiment information, including the model’s hy-

perparameters, datasets and network architecture.

B.1 The hyperparameter configuration

The hyperparameter configuration and GPU hardware. In the experiments, we adopt

Adam (9) optimization algorithm with a learning rate of 0.0001 for training all models.

In addition, we use a Tesla V100 GPU in the experiments while using the operating

system (Ubuntu 18.04.5). For the proposed DCM-JS, the threshold (λ in Eq.(10) of

the paper) for Split MNIST, Split Fashion, Split SVHN and Split CIFAR10 is 40. We

also adopt the threshold λ = 20 for the DCM-JS for other datasets. For the proposed

DCM-JS, the threshold λ for all datasets is 2000.
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-
Diffusion.

(g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 4: The generation results of various models on Split CIFAR10.

Network architectures. In the experiments, we employ the neural network from (15),

which is a U-net architecture for implementing the diffusion model. We describe the

neural network information of other methods in the following. We implement the infer-

ence mode lof the VAE framework by using a convolutional network consisting of five

layers with 32, 64, 128, 256 and 512 units. We also add two separate fully connected

layers where each layer has 128 units on the bottom of the inference model. We imple-

ment the decoder of the VAE framework by using a convolutional network consisting

of six layers with 512, 256, 128, 64, 32 and 3 units. For the GAN-based framework,

we implement the generator using using a ResNet architecture (5) consisting of four

residual blocks. Each block has three convolutional layers with 256, 256 and 256 units.

We also implement the GAN’s discriminator by using a ResNet architecture consisting

of four residual blocks. The final layer of the discriminator is implemented using a

fully connected layer that outputs a single value.More detailed information about neu-
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 5: The generation results of various models on CelebA to Chair.

ral networks is provided in the source code from https://github.com/dtuzi123/DCM.

B.2 Evaluation and dataset setting

Evaluation : In the image generation under unsupervised learning, we employ the FID

score (6) to evaluate the distance between 5,000 generated images and 5,000 real sam-

ples. In the classification task under supervised learning, we use the average classifica-

tion accuracy as the performance criterion.

Datasets. In the following, we introduce the detailed information for the datasets used

in the experiments.

Split MNIST. MNIST (12) is a digit dataset comprising 60,000 training and 10,000 test-

ing samples, respectively. We divide MNIST into five parts as in (2), as Split MNIST,

where each part contains samples from two different classes, .
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 6: The generation results of various models on Split ImageNet.

Split Fashion. Fashion (22) is a dataset which consists of a training set of 60,000 sam-

ples and a testing set of 10,000 examples. We divide Fashion into five parts as in (2),

where each part contains samples from two different classes, namely Split Fashion.

Split CIFAR10, CIFAR10 (11) is a nature image datasets that consists of 60,000 and

10,000 training and testing samples, respectively. We split CIFAR10 into five parts, as

in (2), as Split CIFAR10, where each part contains samples from two different classes.

Split SVHN. SVHN (14) is a real-world image dataset that consists of 73,257 digit

training and 26,032 digit testing samples, respectively. Let us to split SVHN into five

parts according to (2), as Split SVHN, where each part contains samples from two

different classes.
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 7: The generation results of various models on CelebA to CACD.

C Additional experiment results and ablation studies

In this section, we provide more ablation results to analyze the proposed DGM.

C.1 Visual results

In this section, we provide additional visual results. The generation results of various

models on Split MNIST, Split Fashion, Split SVHN and Split CIFAR10 are shown in

Fig. 1, Fig. 2, Fig. 3 and Fig. 4, respectively. The visual generation results of various

models on complex datasets are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8, respectively.
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(a) DCM-SE. (b) DCM-JS. (c) LTS. (d) LGM.

(e) Reservoir-VAE. (f) Reservoir-Diffusion. (g) CGKD-GAN. (h) CNDPM.

(i) CGKD-WVAE. (j) MeRGANs.

Figure 8: The generation results of various models on CelebA to ImageNet.

C.2 The memory size

In this section, we report the number of memorized samples for each approach. The

memory size of various models on Split MNIST, Split Fashion, Split SVHN and Split

CIFAR10 is reported in Table 1, which shows that the proposed DCM requires fewer

memorized samples than other models. We also provide the memory size of various

models trained on complex datasets in Table 2.

Datasets DCM-SE DCM-JS LTS LGM R-VAE R-DDPM CGKD-GAN CNDPM CGKD-WAE CGKD-VAE

Split MNIST 1408 1536 2000 2000 2000 2000 2000 2000 2000 2000
Split Fashion 1664 1664 2000 2000 2000 2000 2000 2000 2000 2000
Split SVHN 1536 1664 2000 2000 2000 2000 2000 2000 2000 2000
Split CIFAR10 1792 1792 2000 2000 2000 2000 2000 2000 2000 2000

Table 1: The number of stored samples of various models for the class-incremental
learning paradigm, achieved by various models.
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(a) DCM-SE. (b) DCM-JS.

(c) CGKD-WAE. (d) CGKD-GAN.

Figure 9: The generation results of various models on CACD (128× 128× 3).

C.3 The dynamic expansion process

In this section, we investigate the dynamic memory allocation process using different

expansion threshold configurations. We train DCM-SE and DCM-JS on Split MNIST

with different expansion thresholds. During the training process, we record the distri-

bution (task) shift and the number of memory clusters changes at each training time,

and we plot the results in Fig. 15 and Fig. 16, respectively. We can see that a small

threshold λ encourages the proposed DCM-SE to frequently build new memory clus-

ters. A similar result can be observed in Fig. 16 for the proposed DCM-JS. In addition,

Both DCM-JS and DCM-SE can add new memory clusters to adapt to the data dis-
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(a) DCM-SE. (b) DCM-JS.

(c) CGKD-WAE. (d) CGKD-GAN.

Figure 10: The generation results of various models on FFHQ (128× 128× 3).

tribution shift when giving an appropriate threshold. Furthermore, the best threshold

configuration for DCM-JS and DCM-SE is 2200 and 50, respectively,

C.4 Dynamic expansion signals

In this section, we investigate how the proposed approach provides signals for mem-

ory expansion during the training. We train DCM-SE and DCM-JS with different λ

thresholds on Split MNIST, and we record the signal evaluated by the left-hand side of

Eq. (10) of the paper at each training time. We plot the expansion signals, when vary-

ing λ for DCM-SE and DCM-JS in Fig. 17 and Fig. 18, respectively. We can observe
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(a) DCM-SE. (b) DCM-JS.

(c) CGKD-WAE. (d) CGKD-GAN.

Figure 11: The generation results of various models on CelebA-HQ (128× 128× 3).

several peaks indicating expansion signals for the memory indicating when the data

distribution changes at certain training times. These results show that both square loss

and JS divergence can provide suitable signals for memory expansion.

C.5 The performance of the proposed model when changing λ.

In this section, we investigate the relationship between model performance and mem-

ory size when changing λ. We train DCM-SE and DCM-JS on Split MNIST with

different thresholds. Once the training is finished, we provide the performance (FID)

on testing samples and the number of memory clusters in Fig. 19. We can observe that
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(a) DCM-SE. (b) DCM-JS.

Figure 12: The image generation results of various models on CACD with 256×256×
3.

(a) DCM-SE. (b) DCM-JS.

Figure 13: The image generation results of various models on CelebAHQ with 256 ×
256× 3.

(a) DCM-SE. (b) DCM-JS.

Figure 14: The image generation results of various models on FFHQ with 256×256×3.
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(a) λ = 1700.
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(b) λ = 1800.
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(c) λ = 1900.
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(d) λ = 2000.
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(e) λ = 2100.
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(f) λ = 2200.
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(g) λ = 2300.

Figure 15: The number of memory clusters and distributions when changing λ in
DCM-SE.

increasing the memory size does not lead to a significant improvement in the model

performance. In addition, both DCM-SE and DCM-JS can still achieve good perfor-

mance by using only five memory clusters.

C.6 The time required for the memorisation operations

Since our proposed memory system is a non-parametric approach, we can easily in-

vestigate how much time is required for the memory optimization during the training.

We learn DCM-SE and DCM-JS on Split MNIST, Split Fashion, Split SVHN and Split

CIFAR10, respectively, in which we only perform the memory optimization and do not

train the model. We provide the memory optimization time (seconds) in Fig. 20. The

empirical results show that the JS-based memory approach requires more operation
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(a) λ = 40.
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(b) λ = 42.
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(c) λ = 44.
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(d) λ = 46.
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(e) λ = 48.
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(f) λ = 50.

Figure 16: The number of memory clusters and distributions when changing λ in
DCM-JS.

Datasets DCM-SE DCM-JS LTS LGM R-VAE R-DDPM CGKD-GAN CNDPM CGKD-WAE CGKD-VAE

CelebA-3DChair 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000
CelebA-CACD 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000
CelebA-ImageNet 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000
Split MINIImageNet 1920 1920 2000 2000 2000 2000 2000 2000 2000 2000

Table 2: The number of stored samples of various models for the domain-incremental
learning paradigm, achieved by various models.

times than The QL-based method. However, both DCM-SE and DCM-JS are efficient

memory approaches.

C.7 The maximum number of samples in the memory cluster

In this section, we investigate whether the number of samples for each memory clus-

ter can significantly affect the memory expansion process and model performance. We

train both DCM-QL and DCM-JS on Split MNIST using different π configurations (the

maximum number of samples for each memory cluster), where we set λ = 2000 and

λ = 42 for DCM-QL and DCM-JS, respectively. We provide the results in Fig. 21,

which shows that changing the memory cluster size does not lead to a significant

change in the model performance and the number of memory clusters.
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(a) λ = 1700.

0 200 400 600 800
The number of training steps

1400

1600

1800

2000

2200

2400

2600

Th
e 

ex
pa

ns
io

n 
sig

na
ls

(b) λ = 1800.
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(c) λ = 1900.
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(d) λ = 2000.
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(e) λ = 2100.
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(f) λ = 2200.
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(g) λ = 2300.

Figure 17: The memory expansion signals when changing λ in DCM-SE.

C.8 Training other types of generative models using DCM

Since the proposed DCM does not interact with the model’s optimization during the

training, we can directly employ the proposed DCM to train different generative models

under OTFCL without modifications. In this section, we train the VAE and GAN using

the proposed DCM-SE on Split MNIST, respectively, called DCM-SE-VAE and DCM-

SE-GAN. We provide the results in Tab. 3, which show that the proposed DCM-SE

can also train other models well while training the diffusion model can achieve the best

performance.
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(a) λ = 40.

0 200 400 600 800
The number of training steps

30

35

40

45

50

55

60

Th
e 

ex
pa

ns
io

n 
sig

na
ls

(b) λ = 42.
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(c) λ = 44.
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(d) λ = 46.
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(e) λ = 48.
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(f) λ = 50.

Figure 18: The memory expansion signals when changing λ in DCM-JS.

Datasets DCM-SE DCM-JS DCM-SE-VAE DCM-SE-GAN

Split MNIST 28.57 30.63 45.23 38.76

Table 3: Image generation performance using the Fréchet Inception Distance score
(FID) for class-incremental learning.

C.9 Additional information for the classification task

Following from (23), we design a dynamic expansion model in which each component

has a VAE model Ai = {pϕi (x | z) , qφi (z |x) || p (z)} and a classifier fθi(x), where

i represents the component index. The primary role of the VAE model is to check the

network expansion during the training and component selection at the testing phase.

Then we design a simple but effective dynamic expansion criterion at ti as :

min{fMMD(Z
′
j ,Zi) | j = 1, · · · , k − 1} > λexpansion , (1)
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Figure 19: The number of memory clusters and the model performance when changing
λ.
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Figure 20: The time required for the memory optimization during the training.

where fMMD(·, ·) is the Maximum Mean Discrepancy (MMD) (20) and λexpansion is

a threshold used to control the model expansion. fMMD(·, ·) is defined as :

fMMD(Z
′
j ,Zi) =

1

b(b− 1)

∑b

a̸=g

{
f(zia, z

i
g)

+ f(z′
j
a,x

′j
g)− f(zia, z

′j
g)

− f(z′
j
g, z

i
a)
}
,

(2)

where Z′
j = {z′j1, · · · , z′

j
b} are the latent variables generated using the VAE model of

the j-th component, where b = 10 is the batch size. Zi = {zi1, · · · , zib} are the latent

variables generated using the encoder qφk
(z |x) by the current component (the k-th

component) that receives the data batch Xi at ti.
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Figure 21: The model performance and the number of memory clusters when changing
the maximum number of samples for each memory cluster.

C.10 The selection process of λ

Since the proposed dynamic expansion mechanism defined by Eq. (10) of the paper,

only accesses the training samples provided at each learning time, we can calculate and

observe the expansion signal (left-hand-side of Eq. (10) of the paper) at each learn-

ing time. We consider a suitable hyperparameter range ([1700, 2300] and [30, 50]) for

DCM-SE and DCM-JS according to the expansion signals, respectively. The expan-

sion signal results are provided in Appendix-C4. Then the optimal hyperparameter is

searched within the hyperparameter range while a small validation set (200 data sam-

ples) is used to evaluate the performance.
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