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Supplementary Material

In this supplementary material, we provide additional
details about our method in Section 1, a detailed introduc-
tion to the datasets in Section 2, specifics of experimental
settings and additional experimental results in Section 3.

1. Additional details of our proposed method
1.1. Visualization of point clouds reprojection using

our SGR module

In this section, we provide additional visualizations of
point clouds offset obtained before and after using Satellite-
Guided Reprojection (SGR) module (introduced in Section
3 of the main paper). The original point clouds obtained
through depth information projection often appear as shown
on the left side of Figure 1, where the point clouds are no-
ticeably concentrated along the edges of building exteriors,
leaving larger interior areas of the buildings devoid of point
clouds distribution. After passing through the SGR module,
the reprojected point clouds gradually shift from the exte-
rior walls of the buildings to their interiors, as depicted on
the right side of Figure 1.

Figure 1. Distribution of point clouds obtained before and after
using SGR module.

1.2. Visualization comparison of different cross-
view projection algorithms

To intuitively demonstrate the feature mapping results of
various methods, RGB values are utilized to substitute the
features requiring mapping, facilitating a visual compari-
son. As clearly shown in Figure 2, the geometric projec-
tion methods Spherical Transform (ST) [6] and Geometric
Projection (GP) [5] can only map features of low building
facades, such as railings and low walls, and these features
are severely distorted. The original BEV method leads to
a concentration of features at the wall locations, resulting
in sparse interior building features. Our approach employs

the SGR module to efficiently map facade features onto the
BEV plane, ensuring maximal transfer while maintaining
visual continuity.

Figure 2. Intuitive visualization comparisons of different cross-
view projection algorithms.

1.3. More details about the structure of cross-view
feature fusion module

The input satellite features and Bird’s Eye View (BEV)
features are both unified within the same top-down perspec-
tive feature space. As shown in Figure 3, we initially em-
ploy an align module to shift the BEV features for align-
ment with the satellite features. Subsequently, a dynamic
fusion module is employed to optimize the feature fusion
process.

Figure 3. The structure of our cross-view feature fusion module.



2. Additional details of the datasets
2.1. Details of panorama depth maps

For monocular depth estimation of street-view panorama
images, we can employ established depth estimation algo-
rithms like ZoeDepth [1], or use Google Street View Down-
load 3601 to download corresponding depth maps, as shown
in Figure 4. Although both methods yield favorable results,
the depth maps provided by Google Street View Download
360 are more accurate for depth estimation in building ar-
eas. Hence, we use it as the data source of depth estimation
information in our method.

Figure 4. Depth estimation result based on street-view image. (a)
Street-view image from OmniCity dataset. (b) Depth estimation
results from ZoeDepth [1]. (c) Depth maps provided by Google
Street View Download 360.

2.2. Details of each dataset

For the public Vigor [7] dataset, we supplemented it
with land use information provided by DataSF2 in the San
Francisco area. Additionally, to facilitate subsequent BEV
tasks, we augmented each street-view image in both the
Vigor and OmniCity [3] datasets with depth maps using
Google Street View Download 3601. For our self-collected
Brooklyn and Boston datasets, we used property data pro-
vided by PLUTO3 and Boston Maps4, as well as the Open-
StreetMap (OSM) building outlines to obtain attribute data
of individual buildings following the approach used in Om-
niCity dataset. Compared with OmniCity dataset, Brook-
lyn dataset covers the entire Brooklyn and Manhattan ar-

1https://svd360.istreetview.com/
2https://data.sfgov.org/Housing-and-Buildings/

Land-Use/us3s-fp9q
3https://www.nyc.gov/site/planning/data-maps/

open-data/dwn-pluto-mappluto.page
4https : / / data . boston . gov / dataset / boston -

buildings-with-roof-breaks

eas, with the step distance of street view images increased
to 97.5 meters to reduce the overlap of satellite images.
The Boston dataset covers the urban area of Boston with
the same step distance of street view images as Brooklyn
dataset. For each dataset, we strictly divide the training and
test samples by regional partition (train: test = 4: 1). Table
1 shows the number of training and test samples of the four
datasets, along with the corresponding categories for each
dataset shown in Table 5.

Table 1. Number of training and test samples in each dataset.

Dataset OmniCity [3] Vigor [7] Brooklyn Boston

Train 14,400 11,960 7,600 7,036
Test 3,600 2,990 1,900 1,759

2.3. The impact of different data partition methods

As mentioned above, the training and test sets for all
datasets were collected through regional partitioning. To
further explore the impact of different data partition meth-
ods, we compare the experimental results of the OmniC-
ity and Brooklyn datasets using random partitioning and
regional partitioning. As illustrated in Table 2, the per-
formance metrics obtained through the random partition-
ing approach are remarkably higher than those achieved
with regional partitioning, a trend particularly evident in the
densely sampled OmniCity dataset. This overestimation is
primarily attributed to the nature of the cross-view datasets
that are densely sampled and randomly partitioned, where a
single satellite image often covers multiple street view im-
ages. Random partitioning of training and test sets in cross-
view image pairs might lead to significant overlaps among
satellite images, compromising the dataset’s independence
and resulting in inflated performance metrics.

Table 2. Quantitative analysis of random and regional partitioning
in OmniCity and Brooklyn datasets, which indicates the overesti-
mation of performance metrics using random partitioning.

Partition Method
Dataset

OmniCity Brooklyn

Land use Floor Land use Floor

Random
SegNext [2] 77.31 77.92 45.00 44.61

BEVFormer [4] 79.15 78.86 48.89 50.32
Ours 80.13 81.88 52.50 56.09

Regional
SegNext [2] 31.25 31.19 35.77 33.16

BEVFormer [4] 31.95 32.18 41.89 43.32
Ours 37.95 40.02 47.20 48.81



3. Additional details of experimental results
3.1. Additional experimental analysis on hyperpa-

rameter settings

In our Satellite-Guided Reprojection (SGR) method, the
calculation of offset ∆ involved two critical hyperparame-
ters: d0 and α, as shown in Eq. 1.

∆ = log(1 + d− d0)× α (1)

In our study, the parameter d0 is introduced to mitigate
the feature offset from areas such as roads to building re-
gions. Typically, d0 represents the depth of the ground
within a certain range from the camera. In practical compu-
tation, if d is less than d0, the offset will not occur. Consid-
ering that the width of urban roads typically ranges between
10 to 14 meters5, together with the additional sidewalks of
about 2 meters wide on each side, we set d0 to approxi-
mately 10 meters. This distance represents the average dis-
tance from a vehicle to either edge of the road. With access
to more specific road width information, the parameter d0
can be further optimized to achieve enhanced performance.

Another critical hyperparameter in our study was α,
which determined the amplitude of variation in ∆ at dif-
ferent depths under the same building. Initially, the entire
area is divided into 3 × 3 blocks, and then the proportion
of building footprint pixels in each block is calculated to
obtain the pixel ratio parameter ρ. Below is our formula
for calculating α based on ρ. The hyperparameter t in the
formula is adjustable. We tested three different values of t:
10, 20, and 30, with a higher value of t indicating a larger
amplitude of change. As shown in Table 3, our experiments
on the OmniCity and Brooklyn datasets with these t val-
ues yielded results, demonstrating that t = 20 achieved the
best performance. Furthermore, as illustrated in Figure 5,
t = 20 is the most balanced choice in terms of visual ef-
fects. Therefore, t = 20 was selected as the parameter for
our experiments.

α =

{
0 if ρ ≤ 0.1,

5 + t× ρ if ρ > 0.1.
(2)

3.2. Additional experimental analysis on satellite
image size

We also provide experimental analysis to validate the
model performance using satellite images of different sizes,
including (1) 128 × 128 pixels, (2) 256 × 256 pixels, and
(3) 512× 512 pixels.

From Table 4, it is evident that the model performs worst
when using the image size of 512× 512 pixels. This is be-
cause with the increasing of image size, the satellite image

5https://safety.fhwa.dot.gov/geometric/pubs/
mitigationstrategies/chapter3/3_lanewidth.cfm

Table 3. Quantitative analysis of different α, in terms of mIoU
(%), which indicates that α = 20 yields the best performance.

Parameter
Dataset

OmniCity Brooklyn

Land use Floor Land use Floor

t = 10 36.18 39.45 46.99 47.74
t = 20 37.54 40.64 47.19 49.51
t = 30 37.68 40.41 46.15 48.42

Figure 5. Visualization of the reprojection results using different
α values.

Table 4. Quantitative analysis of different sizes of satellite images,
in terms of mIoU (%), which illustrates that 256×256 pixels yield
the best performance.

Satellite Image Size Method
Dataset

OmniCity Brooklyn

Land use Floor Land use Floor

128× 128
SegNext [2] 28.65 24.17 32.44 30.07

SG-BEV 36.82 38.23 46.82 49.89

256× 256
SegNext [2] 31.38 25.27 36.85 34.55

SG-BEV 37.54 40.64 47.19 49.51

512× 512
SegNext [2] 29.88 26.03 37.31 30.77

SG-BEV 32.55 31.98 43.04 37.35

may cover multiple blocks and streets, making it challeng-
ing for a single street-view panorama to provide sufficient
effective information. As observed in Figure 6, beyond a
certain range, the model’s segmentation performance be-
gins to decline sharply. The model achieves better perfor-
mance using image sizes of 128 × 128 and 256 × 256 pix-
els. However, too small image size may limit the model’s
perceptual field, which is detrimental to downstream fine-
grained segmentation tasks and leads to inefficiencies in
large-scale applications. Considering the above factors, we
select 256 × 256 pixels as the satellite image size used in
our experiments.

3.3. More quantitative experimental results

The performance of our method in fine-grained attribute
segmentation on four different datasets is demonstrated in



Figure 6. Visualization of the semantic segmentation results by ap-
plying different sizes of satellite images. The first column shows
the satellite image. The rest columns represent the semantic seg-
mentation results obtained from satellite images of different sizes
(first row) alongside their corresponding ground truths (second
row).

Tables 6, 7, 8, and 9. We compare our approach with the
state-of-the-art satellite-based method (SegNext [2]) and
cross-view method (BEVFormer [4]). Our method signif-
icantly enhances the performance in almost all building
categories across all datasets, demonstrating its robustness
across a wide range of urban architectural styles and task
attributes.

3.4. More qualitative experimental results

We provide additional visualizations for various datasets.
Figure 7 illustrates the comparison of our SG-BEV method
with different satellite-based method. Unlike other meth-
ods that roughly identify building outlines without discern-
ing fine-grained attributes, our method is capable of differ-
entiating buildings with distinct attributes. In Figure 8, SG-
BEV is compared with various cross-view methods, demon-
strating more comprehensive feature mapping within the
same building, leading to more consistent internal attributes
and superior performance. Moreover, Figure 9 shows sev-
eral typical failure cases, such as occlusions by trees and
vehicles, or the shooting locations too far from the build-
ings.
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Table 5. Label Categories for Each Dataset. OmniCity [3] dataset contains detailed land use information. Brooklyn, Boston, and Vigor’s
land use information comes from PLUTO3, Boston Maps4, and DataSF2, respectively.

Category OmniCity [3]/ Brooklyn Boston Vigor [7]

Land Use Floor Land Use Land Use

1 Background (BG) Background (BG) Background (BG) Background (BG)
2 1/2 Family Buildings (A1/C1) Level 1 (B1/D1) Industrial Manufacturing (E1) Residential (F1)
3 Walk-Up Buildings (A2/C2) Level 2 (B2/D2) Commercial (E2) Mixed Use (F2)
4 Elevator Buildings (A3/C3) Level 3 (B3/D3) High Residential (E3) Industrial (F3)
5 Mixed Residential/ Commercial (A4/C4) Level 4 (B4/D4) Low Medium Residential (E4) Cultural/ Institutional/ Educational (F4)
6 Office Buildings (A5/C5) Level 5 (B5/D5) Low Residential (E5) Others (F5)
7 Industrial/ Transportation/ Utility (A6/C6) Level 6 (B6/D6) Public (E6) -
8 Others (A7/C7) Level 7 and Above (B7/D7) - -

Table 6. Fine-grained attribute segmentation results of different methods on the OmniCity dataset. Our method demonstrates an improve-
ment in the mIoU by 0.95% - 10.37% and 0.1% - 11.53% for the land use attribute, respectively, and 0.57% - 22.39% and 0.75% - 12.43%
for the floor level attribute, respectively, compared with the state-of-the-art.

Method
mIoU (%) of each category

Land use Floor

BG A1 A2 A3 A4 A5 A6 A7 BG B1 B2 B3 B4 B5 B6 B7

SegNext [2] 86.31 13.16 29.53 19.58 26.70 34.23 21.75 19.73 83.17 7.04 5.69 7.33 15.17 16.59 15.41 51.75
BEVFormer [4] 87.16 15.37 30.47 18.42 28.48 33.38 23.55 20.55 82.99 14.82 17.15 17.63 22.44 20.48 26.45 52.56

Ours 87.26 22.75 33.10 29.95 31.67 38.91 29.75 26.91 83.74 19.93 27.56 29.72 34.87 30.29 36.94 62.06

∆1 +0.95 +9.59 +3.57 +10.37 +4.97 +4.68 +8.00 +7.18 +0.57 +12.89 +21.87 +22.39 +19.70 +13.70 +21.53 +10.31
∆2 +0.10 +7.38 +2.63 +11.53 +3.19 +5.53 +6.20 +6.36 +0.75 +5.11 +10.41 +12.09 +12.43 +9.81 +10.49 +9.50

∆1: The improvement compared with SegNext. ∆2: The improvement compared with BEVFormer.

Table 7. Fine-grained results of different models on the Brooklyn dataset. Except for BG in cross-view method, our method improves
the mIoU by 2.27% - 17.34% and 3.92% - 6.18% for land use attribute, respectively, 0.64% - 29.07% and 0.22% - 21.24% for floor level
attribute, respectively, compared with current state-of-the-art.

Method
mIoU (%) of each category

Land use Floor

BG C1 C2 C3 C4 C5 C6 C7 BG D1 D2 D3 D4 D5 D6 D7

SegNext [2] 83.62 35.32 35.22 35.17 30.41 22.09 39.96 12.97 84.73 31.92 34.92 34.51 29.47 5.29 31.25 27.28
BEVFormer [4] 86.28 48.74 42.76 39.78 31.68 25.39 48.68 20.37 84.67 38.93 46.73 45.00 44.23 21.48 40.59 35.11

Ours 85.89 52.66 47.38 45.96 36.14 29.43 53.09 27.05 85.37 42.65 48.47 45.74 44.45 27.07 46.01 56.35

∆1 +2.27 +17.34 +12.16 +10.79 +5.73 +7.34 +13.13 +14.08 +0.64 +10.73 +13.55 +11.23 +14.98 +21.78 +14.76 +29.07
∆2 -0.39 +3.92 +4.62 +6.18 +4.46 +4.04 +4.41 +6.68 +0.70 +3.72 +1.74 +0.74 +0.22 +5.59 +5.42 +21.24

Table 8. Fine-grained results of different models on the Boston
dataset. Except for BG and E1 in cross-view method, our method
improves the mIoU by 1.19% - 13.59% and 3.08% - 4.24% for land
use attribute, respectively, compared with current state-of-the-art.

Method mIoU (%) of each category: Land use

BG E1 E2 E3 E4 E5 E6

SegNext [2] 86.99 13.59 35.90 34.02 30.08 19.93 7.38
BEVFormer [4] 88.24 15.97 39.85 37.05 37.75 29.28 11.96

Ours 88.18 15.90 44.08 40.40 40.83 33.52 15.16

∆1 +1.19 +2.31 +8.18 +6.38 +10.75 +13.59 +7.78
∆2 -0.06 -0.07 +4.23 +3.35 +3.08 +4.24 +3.20

Table 9. Fine-grained results of different methods on the Vigor
dataset. Our method improves the mIoU by 1.30% - 11.27% and
0.24% - 9.57% for land use attribute, respectively, compared with
current state-of-the-art.

Method mIoU (%) of each category: Land use

BG F1 F2 F3 F4 F5

SegNext [2] 81.03 61.07 19.49 21.25 15.04 11.63
BEVFormer [4] 82.09 63.51 25.74 23.86 16.55 12.25

Ours 82.33 67.65 30.76 28.76 26.12 14.54

∆1 +1.30 +6.58 +11.27 +7.51 +11.08 +2.91
∆2 +0.24 +4.14 +5.02 +4.90 +9.57 +2.29



Figure 7. Comparisons of SG-BEV (Ours) and Satellite-Based Methods for Fine-Grained Segmentation. The first two rows show
results of OmniCity on land use and floor level segmentation tasks. The third and forth rows present land use and floor level segmentation
results of Brooklyn. The fifth and sixth rows show the land use segmentation results of Boston and Vigor. The street-view panoramas, from
left to right, correspond to a 360-degree clockwise rotation starting from the north direction in the satellite imagery.



Figure 8. Comparisons of SG-BEV (Ours) and Cross-View Methods for Fine-Grained Segmentation. The first two rows show results
of OmniCity on land use and floor level segmentation tasks. The third and forth rows present land use and floor level segmentation results
of Brooklyn. The fifth row shows the land use segmentation results of Boston. Results for the Vigor dataset are not included, as the offset
problem in this dataset makes the Spherical Transform and Geometric Projection methods inapplicable. The street-view panoramas, from
left to right, correspond to a 360-degree clockwise rotation starting from the north direction in the satellite imagery.



Figure 9. Limitations of the SG-BEV (Ours) Method. The first row depicts common errors in land use and floor level segmentation
tasks, primarily due to occlusion by trees. The second row presents inaccuracies in land use and floor level predictions, resulting from
occlusion caused by large vehicles. The third and fourth rows display unclear segmentation results, arising from the considerable distance
of buildings from the viewpoint.


