
Ungeneralizable Examples

Supplementary Material

In this document, we present supplementary materials
that couldn’t be accommodated within the main manuscript
due to page limitations. Specifically, we offer additional de-
tails on the proposed UGE framework, including the archi-
tecture of the generator and the modified losses with multi-
ple authorized networks and concrete experimental setting.

6. More Details of UGEs
To optimize the UGEs, we utilize a total loss consisting of
three distinct components. Below, we provide more details
on constructing the UGE framework for multiple authorized
networks, as well as specifics regarding the generator for the
ungeneralizable noise.

6.1. UGEs with Multiple Authorized Networks

It is mentioned in the main paper that we consider the sce-
nario with one authorized network. However, we assert that
our proposed framework is capable of handling cases where
multiple authorized networks are determined by the protec-
tor.

Denote the authorized network set as: F =
{f1

θ , f
2
θ , ..., f

K
θ }, then for each loss item in Lall, each could

be rewritten as:

Lgm =
1

|τ |×n×K

∑
fk∈F

∑
t∈τ

∑
(x,y)∈D

Dist
[
∇L

(
fk
θt(x), y

)
,

∇L
(
fk
θt(xu), y

)]
,

Lud=
1

n×K

∑
fk∈F

∑
(xu,yu)∈Du

[
L(fk

θ (xu), yu)

−ωLkd

(
fk
θ (xu), f

′
θA(xu)

)]
.

(12)

Here, we modify the loss items of Lgm and Lud while keep-
ing the loss item Lfd unchanged. It is important to note that
as the total number of authorized networks increases, the
performance of our synthetic method may decrease. De-
tailed experiments regarding the number K are conducted
in the subsequent section.

6.2. The Architecture of the Generator

Note that in the main paper, we utilize the generator G to
synthesize the ungeneralizable version of the data, which is
denoted as:

xu = G(x), x ∈ D, (13)

where we omit the operation to constrain the norm of the
ungeneralizable noise. And the ungeneralizable examples

C
on

v
B

lo
ck

 1

C
on

v
B

lo
ck

 2
C

on
v

B
lo

ck
 3

R
es

 B
lo

ck
 1

R
es

 B
lo

ck
 2

R
es

 B
lo

ck
 3

R
es

 B
lo

ck
 4

R
es

 B
lo

ck
 5

R
es

 B
lo

ck
 6

U
ps

am
pl

e
1

U
ps

am
pl

e
2

Downsample to ×1/4 Residual Block Upsample to ×4

Original
Input

Ungeneralizable
Output

Constrain by Norm 𝜌

Figure 5. The architecture of the generator to synthesize the un-
generalizable examples.

Table 4. The architecture of the generative perturbation network.

Block Name Output Size Layers

Conv Block 56× 56

Conv Layer (7× 7)
BatchNorm
LeakyReLU

× 1

Conv Block 56× 56

Conv Layer (3× 3)
BatchNorm
LeakyReLU

× 2

Res Block 56× 56


Conv Layer (3× 3)

BatchNorm
LeakyReLU

Dropout
Conv Layer (3× 3)

BatchNorm

× 6

Upsample 224× 224

Conv Transpose(3× 3)
BatchNorm
LeakyReLU

× 2

Conv Layer

Table 5. The hyper parameters setting for CIFAR-10, CIFAR-100
and TinyImageNet datasets.

Dataset Lall ℓtri Lud

λfd λud α ω T

CIFAR-10 1 0.1 0.1 0.1 4
CIFAAR-100 1 0.1 0.1 0.1 20
TinyImageNet 1 1 0.1 0.01 20

xu form the final published ungeneralizable dataset. We use
the ResNet based backbone for constructing the generator.
To be concrete, the architecture of the generator is given in
Table. 4 and Fig. 5, which consists of conv, residual and
upsampling blocks.

Original Image UGEs UGE Noise Original Image UGEs UGE Noise

Figure 6. The visualization results include the original clean images, the ungeneralizable noise (scaled by 255 for better visualization), and
the resultant ungeneralizable images. These visualizations are presented for TinyImageNet dataset.

Table 6. The training details for generator and normal networks on
CIFAR-10, CIFAR-100 and TinyImageNet datasets.

Dataset Network Learning Rate Epoch

CIFAR-10
Generator 1e-3 50
Plain CNN 1e-3 100

Other Networks 0.1 160

CIFAR-100
Generator 1e-3 100
Networks 0.1 200

TinyImageNet
Generator 1e-3 100
Networks 0.1 200

7. Experiments Setup

Here is a detailed setting for each part of the experiments.

The balancing weights and other hyperparameters in
each loss item are provided in Table 5, specifying the pa-
rameter settings for CIFAR-10, CIFAR-100, and TinyIma-
geNet datasets, respectively.

And the details regarding the network training are given
in Table 6, where the training of the generator and the nor-
mal networks is given.

8. More Experimental Results

8.1. More Visualization Results on TinyImageNet

In the main paper, we presented visualizations of ungener-
alizable examples on CIFAR-10 and CIFAR-100 datasets.
Here, we provide additional visualization results on the
TinyImageNet dataset, as shown in Fig. 6. We also visu-
alize the ungeneralizable noise, which could reflect some
details of the original image, showing that the learned UGE
noise is sample-wise. The figure illustrates that our pro-
posed UGE framework is capable of generating visually in-
tegrated ungeneralizable images from the original inputs,
demonstrating its effectiveness on more complex datasets.

8.2. UGEs with Multiple Authorized Networks

We already give the experimental results on UGEs with
multiple authorized networks on CIFAR-10 dataset in Ta-
ble 2. In this experiments, we set two authorized networks
with the same architecture (ResNet-18) but with different
kinds of initialization. Here we explore deeper on the muti-
ple authorized networks cases.

Effect of the Number of Authorized Networks on
UGEs Performance In this experiment, we investigate the
impact of the number of authorized networks on the per-
formance of UGEs. Specifically, we conduct the experi-
ment using three authorized networks, all sharing the same
architecture (ResNet-18) but initialized with different pa-

Table 7. Results on UGEs with multiple authorized networks on
CIFAR-10 dataset, which are tested under three training schemes.

Method Scheme Authorized Hacker

Net-1 Net-2 Net-3 CNN

Original Normal 95.01 95.01 95.06 86.57
Original Distill-1 - - - 88.06
Original Distill-2 - - - 88.09
original Distill-2 - - - 88.14

UGEs Normal 90.39 89.64 90.24 72.42
UGEs Distill-1 - - - 73.60
UGEs Distill-2 - - - 75.32
UGEs Distill-3 - - - 74.32

Figure 7. The performance of the proposed UGEs regarding the
total number of the authorized networks. The ‘Authorized Acc.’
is calculated on the average test accuracy on all the authorized
networks, which is similar for ‘Hacker Distill Acc.’.

rameters. The experimental results are depicted in Table 2,
where we can observe that:
• The effectiveness of the proposed UGEs is further demon-

strated in a scenario involving three authorized networks
(‘Net-1’, ‘Net-2’ and ‘Net-3’). In this case, the UGEs
achieve approximately 90% test accuracy on the autho-
rized networks and around 70% test accuracy on the
hacker network (‘CNN’).

• Nevertheless, it’s important to note a slight decrease in
test accuracy on the authorized networks as the number
of authorized networks increases. Specifically, the test
accuracy is observed to be 93.89% for one authorized net-
work, 93.55% for two authorized networks, and 90.09%
for three authorized networks. Concurrently, the test ac-
curacies on the hacker network show an increase with the
addition of more authorized networks.
Additionally, we analyze the relationship between the

number of authorized networks and the corresponding test
accuracies. To achieve this, we calculate the average test
accuracies across multiple authorized networks, while em-
ploying the test accuracy obtained from the plain CNN as
the representative hacker network. The results of this anal-
ysis are illustrated in Fig. 7.

Table 8. Results on UGEs with multiple authorized networks on
CIFAR-10 dataset, which are tested under three training schemes.

Method Scheme Authorized Hacker

CNN Res-18 CNN Res-18

Original Normal 86.24 95.01 86.57 95.06
Original Distill-1 - - 87.51 95.10
Original Distill-2 - - 88.06 95.44

UGEs Normal 82.95 93.08 45.26 50.43
UGEs Distill-1 - - 48.92 55.06
UGEs Distill-2 - - 48.57 54.74

Performance of UGEs on Multiple Authorized Net-
works with Different Architectures We further investigate
the applicability of UGEs in scenarios with multiple autho-
rized networks employing different architectures. In this
experiment, we choose the plain CNN and ResNet-18 to
constitute the set of authorized networks. The experiments
are conducted on the CIFAR-10 dataset, and the results are
detailed in Table 8.

From the table, we observe that:

• The effectiveness of our proposed UGEs extends to sce-
narios with multiple authorized networks employing dif-
ferent architectures. In this experiment, utilizing both
plain CNN and ResNet-18 as authorized networks on the
CIFAR-10 dataset, we observe that the test accuracy on
authorized networks drops by less than 4%. Conversely,
the test accuracies for hacker networks experience a sig-
nificant reduction of more than 40%.

• In comparison to scenarios with multiple authorized net-
works sharing the same architecture, the UGEs with dif-
ferent architectures for authorized networks show a slight
drop in performance. This discrepancy is primarily at-
tributed to the strict trajectory alignment. Addressing this
challenge presents a potential avenue for future improve-
ments to enhance the UGE framework.

8.3. UGEs for Federated Learning

In Sec. 3.4, we assert the practicality and deployability of
the proposed UGE framework across various applications.
To illustrate, consider a scenario where a global server es-
tablishes the global network as fθ, and two local servers,
each possessing its distinct dataset—D1 for the first server
and D2 for the second server. The global network is sup-
posed to train on the two datasets D1 ∪ D2, while not re-
quiring the data shared between each server.

In this setup, both servers can independently generate
their versions of UGEs with the information of the global

Table 9. Applying UGEs in federated learning setting. The experiments are conducted on CIFAR-10 dataset. We use the plain CNN and
ResNet-18 as the hacker networks.

Acc. Normal Training Federated Hackers

Joint Separate Sever1 Sever2 Global CNN-N CNN-H CNN-D Res18-N Res18-H Res18-D

Acc. F5 93.83 93.54 92.91 - 91.37 85.18 48.46 50.46 93.77 69.17 71.19
Acc. L5 96.27 96.50 - 96.18 95.50 86.05 49.70 58.45 96.31 70.02 73.02

Avg. Acc. 95.05 95.02 - - 93.44 85.62 49.08 54.46 95.04 69.60 72.11

network fθ, denoted as:

D1
u ← argmin

xu

Lall(D1, fθ),

D2
u ← argmin

xu

Lall(D2, fθ),
(14)

where the generation ofD1
u andD2

u involves no data interac-
tion, ensuring data privacy within each local server, meeting
the basic privacy concern of federated learning.

After each server uploads its ungeneralizable version of
the data, the global model can be jointly trained as follows:

f : min
θ

1

|D1
u|+ |D2

u|
∑

{xu,yu}∈D1
u∪D2

u

L(fθ(xu), yu). (15)

This optimization involves training the network using a nor-
mal training scheme with the combined datasets from both
servers.

In order to test the effectiveness of UGEs applied in fed-
erated learning, we designed the experiment as follows. We
selected ResNet-18 as the global model and divided the
CIFAR-10 dataset into two parts. The first part includes data
for the first 5 classes and is hosted by local server 1, while
the second part includes data for the remaining 5 classes and
is hosted by local server 2.

The experimental results are depicted in Table 9, where
we compare the accuracies of the first 5 classes (‘Acc. F5’),
accuracies of the last 5 classes (‘Acc. L5’) and the aver-
age accuracy across all 10 classes (‘Avg. Acc.’). pecifically,
the methods for comparison include: (1) networks with nor-
mal training, trained on the total dataset D1 ∪ D2 (‘Joint’)
and trained on each sub-dataset separately (‘Separate’); (2)
networks in a federated learning setting, including the au-
thorized network trained on D1

u (‘Server1’), the authorized
network trained on D2

u (‘Server2’), and the authorized net-
work trained on D1

u ∪ D2
u (‘Global’); (3) hacker networks

with a CNN backbone trained with D1 ∪ D2 (‘CNN-N’),
trained on D1

u ∪ D2
u (‘CNN-H’) and that distilled from the

authorized network (‘CNN-D’), with a ResNet-18 backbone
trained with D1 ∪ D2 (‘Res18-N’), trained with D1

u ∪ D2
u

(‘Res18-H’) and that distilled from the authorized network
(‘Res18-D’).

From the table, we observe that:

• Our proposed UGE framework precisely aligns with the
privacy requirements of federated learning, preventing
shared data from being reused by third parties and pro-
hibiting data interaction between each local server.

• The generated UGEs not only work when locally training
the network fθ (‘Sever1’& ‘Sever2’ with less than 1%
accuracy drop), but also when jointly training the global
network fθ (‘Global’ with less than 2% accuracy drop).

• The generated UGEs effectively prevent reuse by hacker
networks, resulting in reduced accuracies on CNN from
85.62% to 49.08% and on ResNet-18 from 95.04% to
69.60%. Additionally, it mitigates information leakage
from the global network, as the network after distilla-
tion shows a relatively low accuracy compared to normal
training (a 20% to 30% accuracy drop).

