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6. Appendix
We provide the following content in this supplementary:
• Pseudo code for our SMat.
• More visualization results of our method.
• Complete quantitative results of the comparison.

A. Pseudo Code

In this section, we provide the pseudo-code for our method,
shown in Algorithm 1.

Algorithm 1: Training Process of SMat

def train(images, prompts, alpha_gt):
"""images: [b,3,h,w] prompts: [b,1,h,w]"""
img_feat, cls_token = image_encoder(images)
"""img_feat: [b,c,h/s,w/s]"""
"""cls_token: [b,c,1,1]"""
state = not_all_zeros(prompts)
"""state: [b,1] (1-inter 0-auto)"""
prompt_feat = downsample(prompts) * img_feat
# generate candidate feature
F_can = state * prompt_feat + (1 - state) *

cls_token
"""F_can: [b,c,1,1]"""
# update candidate feature
F_can = cross_attn(F_can, img_feat)
sim_map = sim_func(F_can, img_feat)
# predict and backward
alpha_pred = sim_decoder(images, img_feat,

sim_map)
loss = objective_func(alpha_pred, alpha_gt)
return loss

Note that all user prompts are converted into masks of
the same resolution as images, where all regions covered by
user prompts are highlighted with a value of 1. The process
is illustrated in Fig. 8.

Then we obtain the state conditioned on whether a user
prompt is given for an image. If with an empty prompt, the
state will be set to 0, as shown in the bottom part in Fig. 8. If
the prompt is not all zeros, the state will be set to 1 standing
for the interactive mode. The candidate feature is generated
based on the state, adaptively changing between the prompt
feature and the class token.

For the update of the candidate feature, we employ a 8-
head cross-attention layer for the interaction.

The objective function used in our method is an l1 loss
modified from that in ViTMatte [33], and a laplacian loss.
In ViTMatte, the l1 loss supervises unknown and known
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Figure 8. Transform user prompt into a mask form.

regions separately as

Lseparate l1 =
1

|U|
∑
i∈U

|α̂i − αi|+
1

|K|
∑
i∈K

|α̂i − αi| , (3)

while we separately supervise foreground and background
regions as

Lseparate l1 =
1

|F|
∑
i∈F

|α̂i − αi|+
1

|B|
∑
i∈B

|α̂i − αi| . (4)

It is because ViTMatte has a trimap as its additional input,
therefore it only needs to address the unknown region, while
our setting requires extracting the foreground without the
trimap.

B. Similarity Map Visualization

As shown in Fig. 9, we visualize the similarity map for each
image generated by an empty user prompt and point user
prompt, respectively. With an empty prompt, the class to-
ken will act as candidate feature, which represents saliency
information within an image. Therefore, by comparing sim-
ilarity with image features, the salient instances are high-
lighted. With point prompt, the prompt feature will work as
candidate feature, so that it can locate the target object based
on the average feature of the prompt area. It is obvious that
even in the conjunction of two instances, our method can
have the ability for distinction, which shows its superior in-
stance awareness. As shown in Fig. 10, our probabilistic
similarity map has a positive effect on the final prediction
of details, while the binary map can mislead the prediction
and have a negative effect.
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Figure 9. Visualization of similarity map and alpha matte in different scenarios.

automatic
methods

category
AM2K

(animal)
P3M-500-NP

(human)
AIM-500
(natural)

SAD MSE MAD Grad Conn SAD MSE MAD Grad Conn SAD MSE MAD Grad Conn

GFM animal 11.11 0.0031 0.0065 9.26 6.94 111.98 0.0613 0.0649 32.37 16.26 95.84 0.0505 0.0573 44.78 11.62
PPM human 23.06 0.0096 0.0131 15.61 8.14 13.38 0.0042 0.0078 13.05 9.36 97.36 0.0512 0.0581 50.10 12.05
PPM-ViTAE human 37.84 0.0189 0.0221 18.59 6.98 7.80 0.0017 0.0045 9.61 5.38 109.69 0.0584 0.0651 50.71 6.39
AIM natural 32.03 0.0124 0.0186 29.52 13.80 65.57 0.0404 0.0512 82.72 42.24 48.09 0.0183 0.0285 47.58 21.74
SMat-auto natural 16.84 0.0047 0.0098 17.98 10.08 18.93 0.0064 0.0110 19.07 10.83 34.30 0.0129 0.0203 31.49 13.98

Table 8. Complete quantitative comparison with different automatic matting methods. The results are generated with official models
provided by the authors.
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Figure 10. Effect of different guidance type.

C. More Quantitative Results

Comparison with Prompt-specific Methods.
As shown in Table ??, our method achieves comparable

performance with the prompt-specific methods. Here we
use mask as the prompt for our method to align with the
mask-level guidance, different from the bbox used in the
manuscript. Note that as a unified, prompt-agnostic method,
this comparison maybe unfair to our method. However, the
results further demonstrate the effectiveness and potential
of our method.

Pretraining strategies and model volumes. To figure out
the effect of the pretraining stage, we train SMat with differ-
ent pretraining strategies and different variants of the pre-

Method Support Visual Prompt
AIM-500

SAD MSE

TIMINet(ICCV’21) trimap 29.18 0.0092
SIM(CVPR’21) trimap 27.07 0.0088
MatteFormer(CVPR’22) trimap 26.87 0.0087
ViTMatte(arXiv’23) trimap 17.21 0.0038

MGM(CVPR’21) mask 71.91 0.0268
MG-Wild(CVPR’23) mask 16.72 0.0030

MatAny(arXiv’23)
point,scribble,bbox,mask

124.36 0.0639
MatAny†(manually correction) 27.83 0.0093

SMat(Ours) none,point,scribble,bbox,mask 22.53 0.0070

Table 9. Comparison with prompt-specific methods.

trained model. As depicted in Table 10, DINOv2 demon-
strates an obvious improvement compared with DINO,
which can be attributed to its strong semantics and gener-
alization ability. Also, the larger variant will lift the per-
formance to a new height, however, it will lead to higher
complexity and computation. Therefore, to balance efficacy
and effectiveness, we choose DINOv2-S as the pretraining
model for our SMat.
Generalization on class-specific automatic matting. Here
we report the complete form of the Table 2 in the main
text, the results are illustrated in Table 8. Category-specific
methods can only address their target domain, while our



Params AIM-500 AIM-500
(M) prompt SAD MSE prompt SAD MSE

dino-S [1] 26.5 none 37.96 0.0140 box 40.84 0.0155
dino-B [1] 96.6 none 36.55 0.0131 box 36.46 0.0140
dinov2-S [22] 26.9 none 34.30 0.0129 box 26.63 0.0083
dinov2-B [22] 97.4 none 30.62 0.0106 box 26.48 0.0081

Table 10. Effect of pretrain strategies and model volume. To
seek the balance between efficacy and effectiveness, we select
dinov2-S in our model.

sim func
RefMatte-RW100

SAD MSE MAD

bmm 50.57 0.0260 0.0290
cos sim 44.18 0.0223 0.0252

Table 11. Effect of different similarity functions.

method can provide stable performance across all fore-
ground types.

Ablation study on similarity function. Here we conduct
an ablation study on similarity function during the similarity
comparison between candidate feature and image features,
the results are shown in Table 11. One can see that the co-
sine similarity function is more suitable for this process, we
attribute this to its implicit normalization contained in the
computation so that the decoder receives the relative simi-
larity instead of absolute similarity.

D. More Qualitative Results

Here we demonstrate more results of our method, the pre-
dictions are illustrated in Fig. 11 and Fig. 12.



Figure 11. More qualitative results of automatic prediction of our method.

Figure 12. More qualitative results of interactive prediction of our method.


	. Introduction
	. Related Work
	. Interactive Matting
	. Automatic Matting
	.  Pretrained ViTs

	. Smart Matting: Unified Automatic and Interactive Matting
	. Generate Guidance with Candidate Feature
	. Employ Class Token as Saliency Guidance
	. Merge Prompt Feature as Instance Guidance
	. Update Candidates with Global Awareness
	. Obtain Alpha Matte with Similarity Map
	. Enhance Instance Perception with Foreground Duplication

	. Experiments
	. Implementation Details
	. Main Results
	. Ablation Study

	. Conclusion
	. Appendix
	. Pseudo Code
	. Similarity Map Visualization
	. More Quantitative Results
	. More Qualitative Results


