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A. Additional Experimental Results
In this section, we provide more experimental results for the
completeness of our proposed method.

Method LLM Tuning VQAv2 MMBench Q-Bench MMLU
Method

LLaVA-1.5 [18] Full 78.5 62.7 58.7 50.4
LLaVA-1.5 [18] Freeze 70.6 (-7.9) 48.2 (-14.5) 32.6 (-26.1) 51.1 (+0.7)
LLaVA-1.5 [18] LoRA 79.1 (+0.6) 65.0 (+2.3) 58.4 (-0.3) 50.2 (-0.2)
LLaVA-1.5 [18] Full w/ MAM 79.2 (+0.7) 66.1 (+3.4) 59.5 (+0.8) 52.5 (+2.1)
LLaVA-1.5 [18] LoRA w/ MAM 79.2 (+0.7) 66.0 (+3.3) 59.7 (+1.0) 52.0 (+1.6)

Table 1. Illustration the phenomenon of modality collaboration
and interference. For the LoRA version, we directly utilize the
official checkpoint1, which might tuned carefully. We follow the
original implementation using the input resolution of 336× 336.

A.1. Modality Collaboration and Interference.

We illustrate the phenomena of modality collaboration and
interference using a recent robust benchmark, LLaVA-1.5
[18]. We adhere to the official instructions to train the model
under different LLM tuning conditions, as well as with our
proposed MAM module. As displayed in Table 1, freez-
ing the LLM helps preserve language capabilities without
any loss but is relatively weaker in multi-modal benchmark
performance compared to fully fine-tuning the LLM during
the instruction tuning stage. Additionally, we employ LoRA
[9], an efficient instruction tuning technique, to balance the
performance between freezing and fully fine-tuning. As ob-
served in the third row of Table 1, multi-modal performance
improves while text performance decreases, illustrating the
phenomenon of modality interference. Conversely, incor-
porating MAM consistently enhances performance across
both multi-modal and pure-text benchmarks. Specifically,
we see performance gains of 0.3, 1.3, and 2.1 in VQAv2,
MMBench, and MMLU respectively, which underscores the

∗Equal contribution
†Corresponding author
1The checkpoint is recently released on October 27th, 2023.

benefits of our proposed method in modality collaboration
and the reduction of modality interference.

Additionally, we investigate the impact of using MAM in
different modules within the Attention method in Table 2.
It can be observed that applying MAM to only one linear
projection can actually harm the model’s performance. It
suggests that solely influencing the attention map (applying
MAM on Q or K), or just affecting the value (applying MAM
on V), is insufficient. When MAM is applied on two linear
projections, The results show that applying MAM on Q K
achieves the poorest performance as it still only affects the
attention map. Conversely, applying MAM on K V demon-
strates the best performance, followed by applying MAM
on Q V. It is because that the visual tokens are predomi-
nantly located at the beginning of the sequence, resulting in
a smaller impact from applying MAM on Q. When MAM is
applied on Q K V, it achieves comparable effects compared
to K V. To trade off performance and cost, we consider only
applying MAM on K V.

Module w/ MAM VQAv2 MMBench Q-Bench
Q 77.0 64.3 56.1
K 77.1 64.8 57.1
V 78.2 65.4 57.2

Q V 78.6 65.8 58.9
Q K 77.4 64.7 55.3
K V 79.2 66.1 59.5

Q K V 79.1 65.8 59.8

Table 2. The impact of MAM on various module combinations.

A.2. Hallucination Evaluation

We measure the hallucination of our model on image de-
scription using MMHal-Bench [29] and compare the re-
sults with other recent vision-language models, including
Kosmos-2 [24], IDEFICS [12], InstructBLIP [5], LLaVA
[19], and LLaVA-RLHF [29]. Following [29], we use GPT-
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Figure 1. Detailed performance of various models across the eight
categories in MMHal-Bench [29], where "Overall" represents the
average performance across all categories.

4 to evaluate the overall score and hallucination rate of dif-
ferent MLLMs. As depicted in Figure 1, we find that our
mPLUG-Owl2 tends to generate the response with reduced
hallucination compared to other methods, especially sur-
passing IDEFICS [12] with 80 billion parameters, showing
the superiority of our methods. Besides, we can notice that
our model excels at attribute and counting because the vi-
sual abstractor can effectively identify the main parts of the
image, which reduces the hallucination.

We also study the hallucination of recent popular MLLMs
and present the results in Figure 2. In the first example, the
query asks the models to recognize the pattern on the wall.
However, the pattern is not clearly visible in the image,
causing other models to mistakenly perceive it as a solid
color. Our model, on the other hand, accurately notices the
white pattern on the wall and correctly answers the question.
In the second example, there are only a few trees in the
image. However, InstructBLIP incorrectly considers that
there are no trees in the image. LLaVA and LLaVA-1.5,
on the other hand, hallucinate and consider the tree in the
image to be dense. MiniGPT-4 gives the correct answer, but
with minimal explanation. Our mPLUG-Owl2, however,
answers the question correctly and provides a more detailed
explanation.

A.3. POPE Evaluation

We also conduct the hallucination evaluation using POPE
[15], the results are shown in Table 3. As we can observe
in the table, we can find mPLUG-Owl2 achieves higher F1
scores on the popular and adversarial split, showing the
robustness of our model in terms of object hallucination
compared to other MLLMs.

A.4. Detailed Evaluation Results on MMBench

MMBench [20] is a meticulously designed benchmark
that comprehensively assesses the diverse skills of vision-
language models. The results from the test set for various
MLLMs are presented in Table 4.

A.5. Detailed Evaluation Results on MM-Vet

We provide the detailed results of MM-Vet in Table 5. It can
be observed that by training the visual encoder of mPLUG-
Owl2, it exhibits stronger OCR capability compared to the
model with the same backbone (i.e., LLaVA, Otter). Be-
sides, mPLUG-Owl2 surpasses models with stronger lan-
guage decoders such as LLaVA-13B which equips LLM
with 13 billion parameters.

A.6. Detailed Evaluation Results on Q-Bench

For evaluating the low-level visual perception abilities, we
have included the results of Q-Bench [31] on the test set.
By training the visual encoder, the ability of mPLUG-Owl2
in terms of low-level perception has been improved signif-
icantly, as it outperforms the model with a stronger visual
encoder (i.e., ViT-L (0.3B) v.s. ViT-G (1.9B)), showing the
effectiveness of our training paradigm.

A.7. Detailed Evaluation Results on MMHal-Bench

We include Table 7 for the full evaluation results on MMHal-
Bench [29].

B. Implementation
B.1. Data Mixture

In this section, we detail our final training data mixture used
during the instruction tuning stage in Table 8. Specifically,
we process the VQAv2 [8] data by selecting the answer
with the highest confidence and combining question-answer
pairs that share the same image. This combining strategy
is also applied to GQA [10], OKVQA [21], and OCRVQA
[22] datasets. Additionally, for multiple-choice questions in
A-OKVQA [26], we augment the dataset by switching the
order of options to enhance robustness in terms of multiple
choices. For caption datasets like COCO [17] and TextCaps
[28], we randomly select one caption from the ground truth
for each image. Concurrently, some regional-VQA [11, 33]
datasets are also used to improve regional abilities.

B.2. Training Hyper-parameters

We report the detailed training hyper-parameter settings of
mPLUG-Owl2 in Table 9. Specifically, we leverage the
model parallelism with Megatron [27] distributed training
framework to ensure a larger resolution training while main-
taining efficiency.
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Table 3. Object hallucination benchmark using POPE evaluation pipeline . "Yes" signifies the likelihood of the model producing a
positive response.

Datasets Metrics mPLUG-Owl2 Shikra [4] InstructBLIP [5] MiniGPT-4 [35] LLaVA [19] MM-GPT [7] mPLUG-Owl [32]

Random

Accuracy (↑) 88.28 86.90 88.57 79.67 50.37 50.10 53.97
Precision (↑) 94.34 94.40 84.09 78.24 50.19 50.05 52.07
Recall (↑) 82.20 79.27 95.13 82.20 99.13 100.00 99.60
F1-Score (↑) 87.85 86.19 89.27 80.17 66.64 66.71 68.39
Yes (→ 50%) 44.91 43.26 56.57 52.53 98.77 99.90 95.63

Popular

Accuracy (↑) 86.20 83.97 82.77 69.73 49.87 50.00 50.90
Precision (↑) 89.46 87.55 76.27 65.86 49.93 50.00 50.46
Recall (↑) 82.06 79.20 95.13 81.93 99.27 100.00 99.40
F1-Score (↑) 85.60 83.16 84.66 73.02 66.44 66.67 66.94
Yes (→ 50%) 45.86 45.23 62.37 62.20 99.40 100.00 98.57

Adversarial

Accuracy (↑) 84.12 83.10 72.10 65.17 49.70 50.00 50.67
Precision (↑) 85.54 85.60 65.13 61.19 49.85 50.00 50.34
Recall (↑) 82.13 79.60 95.13 82.93 99.07 100.00 99.33
F1-Score (↑) 83.80 82.49 77.32 70.42 66.32 66.67 66.82
Yes (→ 50%) 48.00 46.50 73.03 67.77 99.37 100.00 98.67

Method Language Model Vision Model Overall LR AR RR FP-S FP-C CP

MMGPT [7] LLaMA-7B CLIP ViT-L/14 16.0 1.1 23.8 20.7 18.3 5.2 18.3
MiniGPT-4 [35] Vicuna-7B EVA-G 12.0 13.6 32.9 8.9 28.8 11.2 28.3
InstructBLIP [5] Vicuna-7B EVA-G 33.9 21.6 47.4 22.5 33.0 24.4 41.1
LLaMA-Adapter-v2 [6] LLaMA-7B CLIP ViT-L/14 38.9 7.4 45.3 19.2 45.0 32.0 54.0
LLaVA [29] Vicuna-7B CLIP ViT-L/14 36.2 15.9 53.6 28.6 41.8 20.0 40.4
G2PT [20] Vicuna-7B ViT-G 39.8 14.8 46.7 31.5 41.8 34.4 49.8
Otter-I [13] LLaMA-7B CLIP ViT-L/14 48.3 22.2 63.3 39.4 46.8 36.4 60.6
mPLUG-Owl† [32] LLaMA-7B CLIP ViT-L/14 62.3 37.5 75.4 56.8 67.3 52.4 67.2
Shikra [4] Vicuna-7B CLIP ViT-L/14 60.2 33.5 69.6 53.1 61.8 50.4 71.7

mPLUG-Owl2 LLaMA2-7B CLIP ViT-L/14 65.4 29.2 69.7 61.7 67.0 60.0 79.5

Table 4. CircularEval multi-choice accuracy results on MMBench [20] dev set. We adopt the following abbreviations: LR for Logical
Reasoning; AR for Attribute Reasoning; RR for Relation Reasoning; FP-C for Fine-grained Perception (Cross Instance); FP-S for Fine-
grained Perception (Single Instance); CP for Coarse Perception. Baseline results are taken from [20]. † denotes the model is carefully
optimized for MMBench.

C. Summary of the Evaluation Benchmarks

We provide a detailed summary of the used evaluation
benchmarks and corresponding metrics in Table 10.

D. Broader Impact

mPLUG-Owl2 employs off-the-shelf LLM and web-sourced
data. Consequently, it inherits some of the weaknesses of
the original LLM and web-crawled data, such as generating
uncensored text or producing biased outputs. We address
these shortcomings by enhancing the model’s grounding
on the visual and instructional input and executing joint
vision-language instruction tuning on a diverse range of
high-quality datasets. However, we advise against deploy-
ing mPLUG-Owl2 models for any downstream applications
without prior evaluation of safety and fairness specific to the
respective application.
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Task Dataset Description Split Metric

Image Caption COCO Captioning of natural images karpathy-test CIDEr (↑)
Flickr30K Captioning of natural images karpathy-test CIDEr (↑)

General VQA

VQAv2 VQA on natural images test-dev VQA Score (↑)
OKVQA VQA on natural images requiring outside knowledge val VQA Score (↑)
GQA VQA on scene understanding and reasoning test-balanced EM (↑)
VizWizQA VQA on photos taken by people who are blind test-dev VQA Score (↑)
TextVQA VQA on natural images containing text val VQA Score (↑)
SciQA-Img Multi-choice VQA on a diverse set of science topics test Accuracy (↑)

VideoQA
MSRVTT-QA Video Question Answering test Accuracy (↑) / Relevance Score (↑)
MSVD-QA Video Question Answering test Accuracy (↑) / Relevance Score (↑)
TGIF-QA GIF Question Answering test Accuracy (↑) / Relevance Score (↑)

Text Benchmark

MMLU A benchmark designed to measure knowledge acquirement dev Accuracy (↑)
BBH A suite of 23 challenging BIG-Bench tasks test Accuracy (↑)
AGIEval A human-centric benchmark specifically designed to evaluate the general abilities of foundation model test Accuracy (↑)
ARC-c A multiple-choice question-answering dataset, containing questions from science exams from grade 3 to grade 9. test Accuracy (↑)
ARC-e A multiple-choice question-answering dataset, containing questions from science exams from grade 3 to grade 9. test Accuracy (↑)

Instruction Following

MME Open-ended VL Benchmark by yes/no questions Perception Accuracy (↑)
MMBench Open-ended VL Benchmark by Multi-choice VQA with Circular Evaluation test Accuracy (↑)
MM-Vet Open-ended VL Benchmark with Various Abilities test GPT-4 Score (↑)
SEED-Bench Open-ended VL Benchmark by Multi-choice VQA Image & Video Accuracy (↑)
Q-Bench Open-ended Low-level Vision Benchmark by Multi-choice VQA test Accuracy (↑)

Hallucination POPE Object existence by yes/no questions random/popular/adversarial Accuracy / Precision / Recall / F1 (↑)
MMHal-Bench Open-ended hallucination benchmarks test GPT-4 Score (↑)

Table 10. Summary of the evaluation benchmarks of mPLUG-Owl2. EM stands for exacting matching.
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