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A. Generative Enhancement Details

Algorithm 1: Generative Enhancement
Define: Pre-trained 2D text-to-image diffusion model M ,

input image I , coarse image Ic, enhanced image If ,
inversion prompt yinv , prompt y, depth map D
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The generative enhancement pipeline starts with fine-
tuning DreamBooth [67] with the input image. Subse-
quently, we apply depth control DDIM inversion [77] to the
coarse rendering image. The prompt yinv , which describes
the coarse rendering, is used to obtain the inverted latent
for each time step. During each denoising step, we denoise
the inverted latent of the coarse rendering and the latent of
the refined image, extracting their respective feature maps,
f c
t and ff

t , as well as their self-attention maps Ac
t and Af

t .
This step is formulated as:
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Here, ✏✓(·) is the text-to-image diffusion model, specifically
in our context, the Stable Diffusion XL [60] model. For the
coarse rendering, the latent is denoted by xc

t , the inversion
prompt by yinv , and the depth map by D. For the refined
image, the latent is represented by xf

t , and the prompt by y.
Following Plug-and-Play [79], we replace the feature and
self-attention maps of the enhanced image with those from
the coarse input:
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f
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f
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Here ✏✓(·;ff
t ,A

f
t ) represents the model with replaced fea-

ture and self-attention maps, and ✏ft�1 is the prediction for
the refined image. Replacement stops once the current time
step is below the thresholds ⌧f and ⌧A. We set ⌧A = 0.5
and ⌧f = 0.2. The threshold is important because the
feature/self-attention maps may contain undesired artifacts
from coarse 3D reconstruction and mesh deformation.

B. Implementation Details

In this section, we provide implementation details of all our
6 tasks.
Pose Editing Pose editing is carried out by manually cre-
ating a skeleton for each 3D model and computing its skin-
ning weights [6]. The object’s pose is edited by adjusting
the skeleton’s bones. A text prompt is not required to de-
scribe the pose.
Rotation Rotation is achieved by spinning the 3D model
around its centroid. This allows us to rotate the model at
any angle and then render it back into a 2D image. How-
ever, it becomes challenging to discern the viewpoint (e.g.,
front, back, or side), given only the coarse rendering image.
Optional text prompts are helpful in guiding the denoising
step and preventing the Janus Problem. If the rotation an-
gle ranges from [�45�, 45�], we add “front view” to the text
prompt. For angle between [135�, 225�], we append “back
view” to the text prompt. For all other angles, we use “side
view”.
Translation Translation can be done by moving the 3D
model within the 3D space in any direction and over any
specific distance. As the translated model is rendered, the
camera perspective adjusts accordingly. As illustrated in
Fig. 6, moving the dog or the truck closer to the camera
results in an enlarged image of the object, consistent with
the camera’s perspective.
Composition Our method allows for the addition of artist-
created 3D objects to the scene. In Fig. 6, we insert various
models into the scene. Despite the 3D models not being
of high quality, our coarse-to-fine strategy significantly en-
hances their detail, as evident in the tiger example where
the texture displays hair details and a realistic face in the
final output, blending well with the environment. Note that
these models are not used for fine-tuning during Dream-
Booth training. In certain cases, text prompts prove helpful
in guiding the denoising step and supplementing our geo-
metric guidance.
Carving Beyond mesh deformation, our method enables
cutting and removing parts of the mesh through the use
of molds. In Fig. 6, a moon-and-star-shaped mold is po-
sitioned against a pumpkin’s surface. By calculating and
excising the overlapping areas, the resulting mesh resem-
bles a finely carved pumpkin in specific shapes.
Serial Addition Similar to composing elements, we can
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Figure 13. Failure cases due to inaccurate reconstruction of tex-
ture, geometry, and color.

take meshes reconstructed from images and integrate them
into the scene one by one. In Fig. 6, we adjust each fish and
duck’s size, pose and their orientation before adding it to the
scene. Our approach realistically merges the coarse 3D fish
models into the scene, maintaining a realistic appearance
even with reflections on the water’s surface.

C. SculptingBench
Our SculptingBench dataset comprises 28 edits applied to
15 images, encompassing each of the 6 editing tasks we
have developed. The full dataset is illustrated in Fig. 14.
These instances present significant challenges to current ob-
ject editing techniques, thereby serving as an ideal platform
for testing and developing precise object editing methods.

D. Limitation

Our method is an initial step towards integrating traditional
geometric processing with advanced diffusion-based gen-
erative models for precise object editing. Yet, it has lim-
itations. A significant challenge is the dependency on the
quality of single-view 3D reconstruction, which is antici-
pated to improve over time. Additionally, mesh deformation
often requires some manual efforts for model rigging. Fu-
ture research might explore data-driven techniques [40] to
automate this process. The output resolution of our pipeline
also falls short of industrial rendering systems, and incor-
porating super-resolution methods could be a solution for
future improvements. Another issue is the lack of back-
ground lighting adjustment, which undermines the realism

of the scene; future work could benefit from integrating dy-
namic (re-)lighting techniques.

As demonstrated in Fig. 13, the reconstruction occasion-
ally fails to produce detailed textures, leading to a blurred
face in the top row example. Challenges also arise in mesh
reconstruction and extraction. The middle row displays ar-
tifacts beneath the man’s armpit, stemming from imprecise
reconstruction in that region. In the bottom row example,
wrong color reconstruction resulted in an less realistic final
color in the output.



Add cherries & Cut off a slice
1. Add a Joker
2. Add a plant

3. Add a jocker and a plant
Replace the dog with a tiger 1. Add a banana
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1. Add a hat

2. Add a parrot

Cut off a slice Carve into a jack o' lantern Carve into a jack o' lantern
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1. Floating with outstretched 
arms and slightly bent legs.

2. Floating with arms extended 
and legs casually apart
3. In a swimming pose

Rotation only Bend the legs Dancing with one arm raised 
and one leg bent
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back, arms open

In Spider-Man’s hand pose Bend the worm
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outstretched to the sides and 
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Figure 14. All 28 edits and 15 input images of our SculptingBench. We provide textual descriptions of the edits here. However, in practice
we aim to make precise, quantifiable edits directly to 3D models, without relying on text prompts.
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