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The Appendix is organized as follows:

• Section A: gives a theoretical justification of the pro-
posed Diffusion Time-step Curriculum.

• Section B: further provides the experimental justification
and discussion on the collaboration of the teacher and stu-
dent with Diffusion Time-step Curriculum.

• Section C: elaborates more details about our DTC123
pipeline. Specifically, we detailed the implementation of
instruct-LLM design and geometry smoothness regular-
ization.

• Section D: showcases more immerse experiment results
and ablation studies with Level50 benchmark.

A. Theoretical Justification
This section elaborates on our diffusion time-step cur-

riculum motivation, where larger time steps capture coarse-
grained concepts and smaller time steps learn fine-grained
details. We first show that a diffusion time-step curriculum
is necessary which further induces an annealed sampling
strategy. Upon that, we explain why teacher and student
models should collaborate with each other to achieve such
a time-step curriculum.

Specifically, SDS employs the de-noised x̂0 generated
by the teacher diffusion model ϵϕ (xt;y, t) to guide the
student-rendered xπ . Thus, the crux of this teacher-student
optimization process is determined by the quality of the
teacher guidance x̂0, which motivates us to explore an ap-
propriate strategy to ensure the valid guidance x̂0 during
any training iterations. We first formalize the definition of
our target from the perspective of student data corruption.

Definition 1. (Data Corruption Reduction) Given the cam-
era pose π and the condition y, we consider a student-
rendered image xπ = g(θ, π) at an arbitrary training it-
eration k. Suppose that there exists a real data point x∗

drawn from the data distribution pdata(x) and an unknown
data corruption δk = DKL[δ(x − xπ)||pdata(x)], such that
we can express xπ as xπ = x∗+δk. Our objective is to iter-
atively reduce the corruption δk inherent in xπ as k → ∞,
guided by the conditional score function ∇ log pt(x), such
that xπ increasingly resembles a sample from pdata(x).

To estimate the real sample x∗ in xπ for good guidance,
one can resort to the score function ∇ log pt(x), which,
however, is practically inaccessible. To solve this issue,
a pre-trained diffusion model ϵϕ(x, t) is often used to es-
timate the score function as shown in previous works [4,
5, 20]. But to better denoise and thus produce quality x̂0,
the teacher model ϵϕ(x, t) needs a certain time step t to
inject noise σtϵ into xπ . In this way, the noisy sample
xt = xπ + σtϵ can approximately lie in the forward dif-
fusion distribution pt(xt) =

∫
Rd N (x, σ2

t I)pdata(x)dx in
the diffusion model ϵϕ(x, t), i.e., the marginal distribution
at time-step t in the forward diffusion process which satis-
fies p0(x0) = pdata(x). For this point, we provide a formal
analysis, and derive a proper time-step sampling for better
diffusion de-noising.

Theorem 1. (Diffusion Time-step Lower bound) Assume
pt(x) is the noisy data distribution and qt(xt|xπ) =
N (xt;αtxπ, σ

2
t I), for any xt ∼ qt(xt|xπ), we have

∥ϵϕ(xt, t) − ∇ log pt(xt)∥22 = O(ε), if these two condi-
tions hold :
a) the pretrained teacher diffusion model ϵϕ(x, t) satisfies
∥ϵϕ(x, t)−∇ log pt(x)∥22 < ε;
b) t ∼ U [T̃δk,ε, T ] where T̃δk,ε = O(∥δk∥ϵ ).

Proof. We assume a) always hold since ϵϕ(·) is a well
trained diffusion model. Assume that the diffusion model
ϵϕ(·) satisfies the Lipschitz condition with a constant L >
0. Specifically, we have:

∥ϵϕ(x, t)− ϵϕ(x
′, t)∥ ≤ L∥x− x′∥. (1)
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Figure 1. (a) The low-resolution generated set embraces similarity compared to its high-resolution counterparts. (b) The T-SNE visualiza-
tion of high/low resolution generated sets on CelebA dataset.

From condition a) we have for any t:

∥ϵϕ(x, t)−∇ log pt(x)∥22 < ε. (2)

Recall that xπ = x∗ + δk where x∗ ∼ pdata(x), we have:

∥ϵϕ(αtxπ + σtϵ, t)−∇ log pt(αtx
∗ + σtϵ)∥

≤∥ϵϕ(αtxπ + σtϵ, t)− ϵϕ(αtx
∗ + σtϵ, t)∥

+∥ϵϕ(αtx
∗ + σtϵ, t)−∇ log pt(αtx

∗ + σtϵ)∥
≤Lαt∥δk∥+ ϵ

(3)

To achieve the desired accuracy, we have to let t suf-
ficient large such that Lαt∥δk∥ = O(ϵ), which means
αt = O( ϵ

L∥δk∥ ). Recall that in conventional diffusion mod-
els [5, 7, 17], we have αt ∝ 1

t , thus we derive

t ≥ O(
L∥δk∥

ϵ
) = O(

∥δk∥
ϵ

). (4)

Theorem 1 shows that the teacher diffusion model
can accurately estimate the desired score function
∇ log qt(xt|xπ) under the condition a) and b). For con-
dition a), it often holds, since the pretrained teacher dif-
fusion model ϵϕ(x, t) can (approximately) converge to the
forward diffusion distribution pt(x). Thus, if one can sam-
ple a proper time step t such that xt satisfies condition b),
then the teacher diffusion model ϵϕ(x, t) can well denoise
xt and provides quality guidance x̂0 to supervise the stu-
dent 3D model. Since in the early training iterations, the
student-rendered xπ contains high corruption δk and T̃δk,ε

positively depends on the corruption level as shown in The-
orem 1, a large time step t ≥ T̃δk,ε is needed to inject more
noise σtϵ into xπ so that condition b) holds and thus guar-
antees the quality of the denoising.

However, there is a dilemma that the marked divergence
of the teacher-generated x̂0 [5] at large time-steps could
negatively compromise the student coherent modeling that
possesses consistent geometric and photometric properties,
resulting in geometry distortion and mode collapse [19,21].
From the perspective of information theory [1], given a
set of teacher-generated x̂0 in certain training iterations,
coarse-grained information (e.g., blur contour) tends to have
less variance than its fine-grained counterpart (e.g., texture
nuances), which is also empirically justified in Part B. This
motivates us to first focus on fundamental, low-variance
student-teacher knowledge transfer with large time-steps.
As the coarse-grain converges along with the training itera-
tion k, the corruptions δk in the student-rendered xπ dimin-
ish. From Theorem 1, smaller noise can counteract corrup-
tion δk and help xt conform to distribution pt(xt). Thus, the
teacher diffusion model often only refines xt to improve the
fine-grains without destroying the course-grains. Accord-
ingly, we can gradually derive a more accurate estimation
of the score function ∇ log pt(x), thus ensuring the refine-
ment of intricate details (e.g., texture nuances) at smaller
time-steps.

B. Experimental Justification and Discussion

This section elaborates on the experimental justification
for the collaboration of the teacher and student model with
the diffusion time-step curriculum. We first intuitively indi-
cate that the low-resolution representation has lower vari-
ance and is more robust compared to its high-resolution
counterpart. Then we quantitatively analyze the view-
conditioned and text-conditioned teacher diffusion model
by comparing their reconstructed results with the multi-
view ground-truth rendering images among different levels
of perturbed noise.
Student progressive representation. We first generated a
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Figure 2. Ablations on different time-step sampling strategy.

set of diverse teacher guidance x̂0, following [5] to use the
CelebA [12] images by perturbing them with large noise
(1000 diffusion time-steps) and reconstructing them dur-
ing the reverse process. We then leveraged image down-
sampling to simulate low-resolution modeling. As depicted
in Figure 1(a), the down-sampled generated set is more sim-
ilar to each other than its high-resolution counterpart: the
high-resolution images scored a structural similarity index
(SSIM) of 0.24, contrasting sharply with the low-resolution
set’s 0.48. This significant difference highlights the reduced
variance and increased similarity among down-sampled im-
ages, which is more suitable for student coherent model-
ing in the initial iteration. Figure 1(b) further shows the T-
SNE visualization of the high/low resolution generated set,
which vividly demonstrates the low-variance and clustering
effect of low-resolution representation. This toy experiment
indicates that though the teacher diffusion model provides
diverse guidance with a large time step [5], we can ensure
coherent modeling of 3D models by coarse-to-fine represen-
tation (resolution constraint) with the annealed time-step.

On the other hand, from the perspective of parameter
sensitivity of multi-resolution modeling [14], rays intersect-
ing the scene at coordinates x and the hash function defined
as h(x) =

⊕d
i=1 xiπi mod T , even minor deviations in x

lead to notable variations in encoded values. Denoting δx as
the noise-induced deviation, the change in hash values, ∆h,
escalates with higher resolutions, i.e., ∂∆h

∂δx ∝ resolution, in-
dicating that higher resolutions inherently magnify the sen-
sitivity to noise and variance in the ground truth, which also
inspires us to first capture the low-resolution representation
for more stable 3D model optimization.

Teacher coarse-to-fine prior. Here, we conducted a quan-
titative experiment to answer the question about the suit-
able teacher for diffusion time-step curriculum. Given a
3D object from the high-quality real-scanned dataset Omin-
iObject3D [22], we used Cycles Engine in Blender to ran-

domly (with fixed elevation and different azimuth ) ren-
der 16 multi-view images and transparent backgrounds with
pure grey color. We then perturb them with different levels
of noise and then compare 1 the quality of the reconstructed
image with the ground-truth renderings by investigating the
contour exploration consistency via MaskIoU and the per-
ceptual generation quality computed by CLIP-similarity.

As illustrated in Table 1, (1) At large time-steps, Zero-
1-to-3 generated outputs tend to have better MaskIoU than
Stable Diffusion outputs, which suggests that Zero-1-to-3
serves as a coarse-grained teacher by providing a more ac-
curate contour or boundary at large t; (2) At smaller time-
steps, both Zero-1-to-3 and Stable Diffusion have relatively
high MaskIoU since the small scale perturbed noise doesn’t
corrupt the overall geometry structure. Considering the
quality of perceptual generation (CLIP similarity), we no-
tice that Stable Diffusion surpasses Zero-1-to-3 to some ex-
tent, indicating that Stable Diffusion is more suitable for a
fine-grained teacher, since it produces more realistic texture
details at smaller t.

C. Background
C.1. Student 3D Model

We aim to learn an underlying 3D representation θ (e.g.,
NeRF, mesh), which uses a differentiable renderer g(·) to
generate the relative image from any desired camera pose
π by xπ = g(θ, π). For computation memory concerns,
we leverage NeRF [13] for low-resolution scene modeling,
and then adopt DMTet [16] for high-resolution mesh fine-
tuning.
(NeRF) [13] is a differentiable volumetric representation.
It characterizes the scene as a volumetric field by density
and color with a neural network θ. Given a camera pose π,

1Note that the condition of Zero-1-to-3 is the default front view image
and the camera parameters, while the condition of Stable Diffusion is the
caption of the 3D object.
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Quantitative analysis among different time-steps
Time-step 200 400 600 800
Metrics MaskIoU CLIP-S MaskIoU CLIP-S MaskIoU CLIP-S MaskIoU CLIP-S

Zero-1-to-3 0.92 0.84 0.87 0.82 0.84 0.79 0.82 0.80
Stable Diffusion 0.89 0.90 0.81 0.84 0.72 0.82 0.63 0.74

Table 1. Quantitative compassion of Zero-1-to-3 and Stable Diffusion among different time-steps, where CLIP-S denotes the CLIP simi-
larity between de-noising output and the ground truth renderings.

the rendered image can be computed by alpha compositing
the color density field. Considering rendering efficiency,
multi-resolution hash grids [14] are usually utilized to pa-
rameterize the scene. This representation helps to achieve
high-quality rendering results with a faster training speed.
Hybrid SDF-Mesh Field (DMTET) is a differentiable sur-
face representation. It parameterizes the Signed Distance
Function (SDF) by a deformable tetrahedral grid (VT , T ),
where T represents the tetrahedral grid and VT corresponds
to its vertices. By assigning every vertex vi ∈ VT with a
SDF value si ∈ R and a deformation vector ∆vi ∈ R3, this
representation allows recovering a explicit mesh through
differentiable marching tetrahedra.

C.2. Teacher Diffusion Model

Conditional Diffusion Model (CDM) [6,8] basically gen-
erates the desired samples given a certain condition y. In the
context of SDS-based 3D generation, we mainly utilize the
following two types of teacher diffusion prior with different
conditions:
Text-conditioned Prior. Large-scale pre-trained text-to-
image diffusion models, e.g., Stable Diffusion [15], are
often leveraged with the text description condition of the
reference image. In practice, one often employs tex-
tual inversion [3, 23] or large vision-language models e.g.,
BLIP2 [10] to generate the text description of the reference
image.
View-conditioned Prior. Zero-1-to-3 [11] is fine-tuned
from the Stable Diffusion image variations [9] on the 3D
synthetic dataset Objaverse [2], and integrates viewpoint
control to conduct novel view synthesis given the camera
pose and reference image as condition.

D. Implementation Details
This section elaborates on the details of implementation

details of instruct-LLM design and geometry smoothness
regularization.
Instruct-LLM Design. In the second stage, we noted that
employing finer, more precise linguistic prompts to signif-
icantly narrow the image distribution in Stable Diffusion,
complementing the mode-seeking SDS algorithm. Utiliz-
ing large language models (LLMs), we converted BLIP2-

derived prompts into comprehensive, view-specific descrip-
tions. This approach intensifies detail in each orthogonal
view, avoiding superfluous structural descriptions and re-
solving perspective conflicts. The detailed instruction is as
follows:

“I am about to begin a series of image-3D generation
tasks and need your help to create prompt descriptions.
I’ll provide the frontal description first. You will then
give a one-sentence description for each the left, right,
and rear sides, ensuring: (1) Alignment with the frontal
description, (2) Conciseness with rich textural detail,
(3) 3D consistency across descriptions, using DALLE-
3 for validation.”

Figure 3 illustrates the prompts created using this
method, demonstrating our technique’s effectiveness in
generating consistent, detailed multi-view descriptions.

BLIP2
“ A standing astronaut”

"An astronaut stands, outfitted in a spacesuit, the clear 
helmet reflecting the surroundings."

“The astronaut stands at attention, clad in a detailed 
spacesuit, the helmet clear and gleaming.”

"The astronaut, in full gear, stands with a clear helmet and 
a control panel visible on the chest."

GPT4-guided

Prompt Zoo Generation

Figure 3. Examples of viewpoint-augmentation with LLM. Given
an abstract prompt, our instruct-LLM outputs complement the ini-
tial prompts with insufficient information.

Geometry smoothness regularization. We observe that
the 3D model occasionally generated high-frequency arti-
facts on the crisped surface and edge contour. Following
[18], we leverage the normal vector regularization Lreg:

Lreg = Ea [∥n(a)− n (a+ β · N (0, I)) ∥1] (5)

where n denotes the normal vector at a point a in the
3D space, β is a small perturbation scale and N (0, I) is
standard Gaussian noise.

In the second stage of DMTet, we implement Lapla-
cian smoothing regularization where the Laplacian matrix
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L ∈ RV×V is computed by identifying adjacent vertex pairs
from each face in F. Entries in L are set to −1 for adjacent
vertices and to the degree of the vertex on the diagonal. The
smoothing loss Lreg is defined as the mean norm of the prod-
uct of the Laplacian matrix L and vertex positions V:

Lreg = mean (∥L ·V∥2) , (6)

which ensures the uniformity and smoothness of the
mesh by minimizing deviations in the vertex positions, lead-
ing to a more regular and smooth 3D structure.

E. More Experimental Results
This section presents more qualitative results of DTC123

and ablation studies on the time-step sampling strategy.

E.1. Ablation on Time-step Sampling Strategy

To better analyze the DTC123 premium sampling strat-
egy, we still adopted the failure rate metric in the manuscript
on Level50. As illustrated in Figure 2, our proposed sam-
pling strategy consistently exhibits a lower failure rate com-
pared to other methods at different difficulty levels. We
justify that the robustness should be attribute to the intro-
duced local randomness with the annealed interval, since
(1) even within the same training iteration, the corruption
level of 3D models varies across camera poses, and (2)
in contrast to [20], it is nearly impossible to pinpoint the
exact corruption level without the ground-truth of unseen
view, we need some randomization for self-calibration of
the teacher-student symbiotic cycle, like SDE sampling in
conventional DMs [7], which can partially correct the cu-
mulative error introduced by the optimization process and
alleviate ‘floaters’ effects.

E.2. More Qualitative Results

In Figure 4 and Figure 5, we present additional qualita-
tive outputs with high fidenity and multi-view consistency.
Please check out the video demos for more results.
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Input Reference View Novel View

Figure 4. More DTC123-generated results. Our approach yields results with improved fidelity and more robust geometry.
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Input Reference View Novel View

Figure 5. More DTC123-generated results. Our approach yields results with enhanced fidelity and more robust geometry.
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